

Measurement of Top Quark Properties at D0

Liang Li University of California, Riverside

On Behalf of the DØ Collaboration

Measurement of Top Quark Properties at D0, L. Li (UC Riverside)

Pheno 07, May 08 2007

Top Pair Production

Top Pair Production at Tevatron

Top Branching Ratio

SM Theory $R = \frac{Br(t \to Wb)}{Br(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} \sim |V_{tb}|^2$

- Unitarity & experimental constraints: 0.9980<R<0.9984 (90% CL)
- If significant deviation seen from the SM ratio
- ➔Opportunity to discover new physics
 - Additional quark families
 - Non-SM production/decay

Experimental Method

- Measure R in lepton + jets final states
 - One W decays leptonically: $W \rightarrow e/\mu \ (\tau \rightarrow e/\mu)$
 - Other W decays hadronically: W→qq
- Background
 - Major background: leptonically decay W associated with jets (W+jets)
 - QCD multijet background
 - Z+jets, WW, WZ, ZZ, single top production (other background)
- Use b-jet identification to separate signal from background
 - Build discriminant using four kinematic variables (0-tag sample)

Top Branching Ratio (2)

Tagging probability of ttbar as a function of R

 $P_{t\bar{t}}^{n-tags} = P^{n-tags}(t\bar{t} \to bb) \times R^2 + P^{n-tags}(t\bar{t} \to qb) \times 2R(1-R) + P^{n-tags}(t\bar{t} \to qq) \times (1-R)^2$

 Probabilities P^{n-tags} to observe n-tag = 0, 1, or >= 2 b-tagged jets are computed separately, using the probabilities for each type of jet (b, c or light-quark jet) to be b-tagged

Count events with n-tags

- Sum of the expected background and signal $N^{n-tags} = P_{t\bar{t}}^{n-tags} (Br(t \rightarrow Wb)) N_{t\bar{t}} + P_{bkg}^{n-tags} \times N_{bkg}$
- Signal contribution as a function of R and $N_{\rm tt}$
- O-tag sample
 - Shapes of discriminant for ttbar and W+jets derived from MC
 - · Background normalization extracted from discriminant fit
- Normalization of multijet background estimated by counting events in orthogonal control samples
- Contributions from other background determined from MC
- →Fit N_{tt} and R simultaneously to N_{n-tags} using 2D nuisance likelihood fit

Top Branching Ratio (3)

Observed and fitted number of events

PLB 639, 616 (2006)

Top Quark Charge

- In SM, top charge +2/3 e
- t → W⁺ b
- leptonic decay: $Q1 = |q_1 + q_{bl}|$
- Hadronic decay: $Q2 = |-q_1 + q_{bh}|$

- Exotic, top charge -4/3 e
- "t" → W⁻ b
- leptonic decay: Q1 = |-q_I + q_{bI}|
- Hadronic decay: Q2 = |q₁ + q_{bh}|
- Lepton + jets sample: at least 4 jets, 2 b-tagged jets
- Compute top quark charge
 - Discriminate between b and bbar jets
 - Associate lepton with correct b-jet

Top Quark Charge (2)

Jet charge

- Sum charge q_i of tracks in jet weighted by p_T
- Apply to jets identified as b-jets by displaced vertex (secondary vertex tagging --- SVT)

Dijet collider data (enhanced in heavy flavor)

- Exactly two jet
 - Both SVT-tagged (tight dijet sample)
 - "Tag jet" not required to be tagged (loose dijet sample)
- Require "tag jet" to contain a muon
 - Direct B/D meson decay
 - Charge flipping processes
 - B \rightarrow D meson cascade decay
 - Oscillated neutral B meson
- "Probe jet" (opposite side) charge measured: q_{jet}
- Fraction of c-cbar events considered
- \rightarrow Extract P_f (charge distribution when jet is of flavor
- f = b, bbar, c, cbar) from data

 $\sum_{i} q_{i} p_{T_{i}}^{\circ}$

Primary

vertex

 q_{jet} -

Secondary

vertex

Top Charge (3)

Jets and lepton can be assigned according to many permutations

- Measured 4-vectors of jets and lepton are fitted to ttbar event hypothesis (constrained kinematical fit)
- Associate lepton with b-jet by selecting permutation with the highest probability of arising from ttbar event

First Measurement of the top quark electric charge

Events with 2 b-tags: low statistics (21 events) but large S/B ~ 11

Expected charge templates

• MC simulation + jet charge data

Data prefers Standard Model

- Statistically limited
- Careful control of systematic uncertainties
 - Statistical uncertainty on the kinematic correction
 - Uncertainty of the dijet data production mechanism

Top Charge (4)

Likelihood ratio test

- Ratio $\Lambda = P_{SM}/P_{EX}$ measured in data
- Nuisance parameter to include systematics
- Compared with expected distributions in SM & exotic scenarios
 - Observed 'Bayes factor': 4.3 (positive)
 - p-value=0.078 (assuming exotic model as null hypothesis)
 - p-value=0.45 (assuming SM model as null hypothesis)

→ Exclude 100% exotic quark scenario up to Max. 92% C.L.

Mixture of charges not excluded

- Perform maximum likelihood fit
- Fraction ρ of exotic quark pairs
 - 0.13± 0.66 *stat* ± 0.11 *syst* ρ < 0.80 @ 90% C.L.

PRL 98, 041801 (2007)

W Helicity

SM Theory :

- Top quark decays via V-A charged current interaction
- Due to the observed Parity violation, charged current (W boson) only couples left handed particles

New physics:

- V+A charged current interactions
 - Alter the fractions of W bosons produced in each of three possible polarization states

Non-zero f₊ :

sign for new physics! In this analysis, fix f₀ = 0.70

----W+

Measure W Helicity through $cos(\theta^*)$ distribution

- θ^* : angle between the top quark flight direction and the charged lepton momenta in the W rest frame
- 3 components in $cos(\theta^*)$ distribution: 3 helicity states

W Helicity (2)

Data sample enriched in ttbar events

- Two final states
 - Dilepton
 - Background: Drell-Yan, diboson, Fake lepton
 - Kinematics and topology cut
 - Lepton + jets
 - Background: W+jets, multijet production
 - Multivariate selection
 - Likelihood discriminant
- For each selected event
 - Reconstruct the top quark & W boson leptonic decay
 - Compute cos(θ*)
- Compare the $cos(\theta^*)$ distribution obtained in data to different signal hypotheses:
 - MC ttbar samples with:
 - Fixed f₀ = 0.70
 - Different f₊ values
- Use pseudo-experiments to estimate systematic uncertainties

W Helicity (3)

Reconstruct top quark and W boson four-vector

- Lepton + jets: using constrained kinematic fit
- Dilepton: M_{top} assumption, algebraic resolution & average over the possible (lepton, jet) pairings

Cos(θ^* **) distribution**

- Signal for different f₊: V-A and V+A
- Include both data and background distributions

W Helicity (4)

Poisson likelihood L(f₊)

- Compute binned likelihood for the data to be consistent with the sum of signal and background at each of seven chosen f₊ values
- Background normalization is constrained within errors with the expected value by a Gaussian term in the likelihood
- A parabola is fit to the $-\ln[L(f_+)]$ points to determine the likelihood as a function of f_+ $f_+ = 0$.
- Likelihood maximization
 - find which f₁ value best reproduces data distribution

 $f_+ = 0.056 \pm 0.080 \text{ (stat)} \pm 0.057 \text{ (syst)}$ $f_+ < 0.226 @95\% \text{C.L.}$

Compatible with predicted SM value $f_{+} = 1.36 \times 10-3$

Backup Slides

The Fermilab Tevatron

- Highest energy accelerator currently in operation
- Experiments at D0 and CDF
- Data delivered: >2fb⁻¹
 - Goal of Runll is 4-9fb⁻¹

The D0 Experiment

Tracking

- Silicon + fiber tracker
- 2T magnetic field solenoid
- Pre-shower detectors

Calorimeter

– Liquid argon (EM+HAD)

Muon system

- Wire chambers
- 1.8 T iron toroid

Br(t→Wb) Systematic Uncertainites

Summary	of statistical	and systematic	uncertainties	on R
---------	----------------	----------------	---------------	------

Uncertainties on <i>R</i>		
Statistical	+0.17	-0.15
<i>b</i> -tagging efficiency	+0.06	-0.05
Background modeling	+0.05	-0.04
Jet identification and energy calibration	+0.04	-0.03
Multijet background	± 0.02	
Total error	+0.19	-0.17

Top Charge: Clarifications

Discussions between D0 and CDF regarding statistical treatment

- Experts debating on definitions of the C.L. (probably continues.....)
- Clarification from D0 about the 92% C.L. in the paper (no errata)
- D0 provides an official clarification web page: <u>http://www-</u> <u>d0.fnal.gov/Run2Physics/WWW/results/final/TOP/T06D/extra/topQ.htm</u>
- Had we a priori chosen a rejection region at α = 5% (10%) we would (not) exclude the exotic hypothesis at the 95% (90%) confidence level based on our observation
- The maximum confidence level we could exclude the exotic hypothesis based on our observation is the 92.2% C.L. stated in the paper
- Compare sensitivity of different measurements based on the Bayes factor (4.3) or the p-value (0.078)

Top Charge Uncertainties

Systematic	Observed	Expected	
Statistical uncertainty only	95.8	95.3	
+ Fraction of $c\bar{c}$ events	95.8	95.2	
+ Charge-flipping processes	95.7	95.2	
+ Weighting with respect to p_T and y spectra	94.4	94.1	
+ Fraction of flavor creation	93.7	93.4	
+ Statistical error on P_f	93.3	93.1	
+ Jet energy calibration ^a	92.4	91.8	
+ Top quark mass	92.2	91.2	

Jet Charge Extraction (1)

Parametrize jet charge distribution on "probe jet" side in the triple tag selection by:

- fraction of ccbar events $\rightarrow x_{c}$
- fraction of events with "flipped" tag muon charge (B-mixing, cascade, etc,...) $\rightarrow x_{flip}$

 $f_{h}, f_{h}, f_{c}, f_{c}$

• the real jet charge distributions for b- and c-jets

Jet Charge Extraction (2)

• The correction function is defined as the ratio of the weighted and unweighted jet charge distribution (distributions denoted as f)

W Helicity Ensemble Tests

Test of the maximum likelihood performance

Create a "pseudo-dataset" of MC events with :

 \Box the same number of MC events as observed in the data \circ

□ the signal/background composition can fluctuate according to a binomial distribution $(n_{bkg} = N_{tot}^{observed} - n_s)$

Compare the fitted f_+ to the known input f_+

Repeat the procedure 1000 times for each f_+ value **Evaluation of systematic uncertainties**

• Varying parameters can affect both the data sample composition (different selection efficiency of the likelihood discriminant) and the shape of $\cos(\theta *)$ distributions.

• Effect on the fitted f_+ : studied with pseudo-experiments (varying the parameters in the peudo-dataset)

• Source : Jet Energy Scale, M_{top} , MC statistics, heavy flavor content (W+jets), ...

 $\Delta f_{+} \sim 0.03$ to 0.04 (for each one)

W Helicity Uncertainties

TABLE II: Systematic uncertainties on f_+ for the two channels and for their combination.

Source	ℓ +jets	Dilepton	Combined
Jet energy scale	0.038	0.039	0.038
Top quark mass	0.019	0.028	0.021
Template statistics	0.037	0.024	0.028
$t\bar{t}$ model	0.006	0.018	0.009
Background model	0.007	0.007	0.005
Heavy flavor fraction	0.018	—	0.015
Calibration	0.018	0.010	0.016
Total	0.063	0.059	0.057

 $f_{\pm} = 0.109 \pm 0.094 (\text{stat}) \pm 0.063 (\text{syst})$

 $f_{\pm} = -0.089 \pm 0.154 ({\rm stat}) \pm 0.059 ({\rm syst})$

 $f_{V+A} = 0.187 \pm 0.267 (\text{stat}) \pm 0.190 (\text{syst})$

 $f_{V+A} < 0.77 @ 95\%$ C.L.