Gravitational Fixed Points and Virtual–Graviton Signals

Tilman Plehn

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Gravitational Fixed Points and Virtual–Graviton Signals

Tilman Plehn

MPI für Physik & University of Edinburgh

Madison, 5/2007

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Dave's Comments on Majorana Neutralinos

Tilman D. Plehnwater

MPI für Physik & University of Edinburgh

Madison, 5/2007

Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Outline

WBF and Supersymmetry

Simplest Model: Stable Charginos

Alternative Spin 1: Stable Scalars

Alternative Spin 2: Stable Vectors

Outlook

> Tilman D. Plehnwater

WBF and SUSY

- Stable Charginos
- Stable Scalars
- Stable Vectors
- Outlook

Old post-Pythia SUSY questions for LHC

- (1) MSSM fermions Majorana or Dirac?
 - gluino identifiable with help of bottom cascades [Cambridge; Alves, Eboli, TP; Florida,...]
 - neutralino in cascades entangled with slepton couplings
 - neutralino in $\tilde{q}\tilde{q}$ t channel swamped by gluino
- (2) weakly interacting particles observable outside cascades? [Smadgraph release]
 - Drell-Yan processes killed by W, Z backgrounds
 - WBF pair production rate limited $~[1/(16\pi^2)\ll 1]$
- \Rightarrow WBF $W^{\pm}W^{\pm} \rightarrow \chi^{\pm}\chi^{\pm}$ with *t*-channel neutralino

Reminder: MSSM coupling structure

- $\chi^0 \chi^0 Z$: Higgsinos–Higgsino
- $\chi^{\pm}\chi^{\mp}Z$: Higgsino–Higgsino and gaugino–gaugino
- $\chi^0 \chi^\pm W^\mp$: Higgsino–Higgsino and gaugino–gaugino
- $\chi\chi H$: gaugino–Higgsino mixing
- $\Rightarrow\,$ maybe some information on Higgsino or gaugino fraction $_{[dark\,matter]}$
- $\Rightarrow \text{ still generally: WBF processes better for light gauginos} \quad \text{[cross section $\mathcal{O}(\textit{fb})$]}$

> Tilman D. Plehnwater

WBF and SUSY

- Stable Charginos
- Stable Scalars
- Stable Vectors
- Outlook

Old post–Pythia SUSY questions for LHC

- (1) MSSM fermions Majorana or Dirac?
 - gluino identifiable with help of bottom cascades [Cambridge; Alves, Eboli, TP; Florida,...]
 - neutralino in cascades entangled with slepton couplings
 - neutralino in $\tilde{q}\tilde{q}$ t channel swamped by gluino
- (2) weakly interacting particles observable outside cascades? [Smadgraph release]
 - Drell-Yan processes killed by W, Z backgrounds
 - WBF pair production rate limited $[1/(16\pi^2) \ll 1]$
- \Rightarrow WBF $W^{\pm}W^{\pm} \rightarrow \chi^{\pm}\chi^{\pm}$ with *t*-channel neutralino

Some backgrounds

- SM background: WBF WW production, small but decay dependent [neglected]
- SUSY backgrond: qq via t-channel gluino, neutralino, etc
- production rates in SPS9 [bino-chargino mass 198 GeV]

$\chi_1^+\chi_1^+ + \text{jets}$	WBF cuts	30 GeV around <i>m</i> _q	50 GeV around m _q
all EW	1.138 fb	0.847 fb	0.786 fb
WBF	0.825 fb	0.766 fb	0.724 fb
EW non-WBF	0.261 fb	41.4 ab	23.1 ab
QCD	0.439 fb	14.7 ab	6.19 ab

> Tilman D. Plehnwater

WBF and SUSY

- Stable Charginos
- Stable Scalars
- Stable Vectors
- Outlook

Joe Lykken's Motivation at FNAL

Early running of LHC

- plenty of evidence for a new physics
- not enough useful cascade events [rate? jet energy scale?...]
- $\Rightarrow\,$ how do we need to get an ILC without waiting forever?
- $\Rightarrow\,$ this talk volunteered by Dave R
 - WBF process: (1) charginos and neutralinos light
 - WBF process: (2) charginos and neutralinos interesting
- ⇒ might not see weakly interacting stuff in WBF, but if yes, it's a case for instantaneous ILC

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

- Stable Scalars
- Stable Vectors
- Outlook

Simplest Model: Stable Charginos

Starting point: (meta-) stable charginos

- simplest test case: no chargino decays [decays: lower rate, more information, technically trivial]
- AMSB: neutralino-chargino mass difference tiny
- massive stable like-sign leptons (muons) [Cambridge]
- similar to Higgs-coupling analysis [TP, Rainwater, Zeppenfeld; Hankele, Klamke, Figy]
 (1) trigger on charginos or forward jets
 - (2) analyze jet distributions

Few details

- all distributions normalized
- only WBF-jet cuts
- final-state mass 197 GeV

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

- Stable Scalars
- Stable Vectors
- Outlook

Jet Distributions

Normalized distributions for WBF signal

- separated forward jets for WBF signal
- $p_{T,j}$ not fixed by m_W $[d/dp_T p_T/(p_T^2 m_W^2) = 0]$
- every single QCD distribution very different (and mass-peaked)

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

- Stable Scalars
- Stable Vectors
- Outlook

Jet Distributions

Normalized distributions for WBF signal

- separated forward jets for WBF signal
- $p_{T,j}$ not fixed by m_W $[d/dp_T p_T/(p_T^2 m_W^2) = 0]$
- every single QCD distribution very different (and mass-peaked)

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

- Stable Scalars
- Stable Vectors
- Outlook

Jet Distributions

Normalized distributions for WBF signal

- separated forward jets for WBF signal
- $p_{T,j}$ not fixed by m_W $[d/dp_T p_T/(p_T^2 m_W^2) = 0]$
- $-\Delta\phi_{jj}\sim\pi/2~{
 m preferred}~~{
 m [not just}~g_{\mu
 u}$ in ${
 m WW}_{\chi\chi}$ coupling]
- every single QCD distribution very different (and mass-peaked)

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vector:

Outlook

Alternative Spin: Stable Scalars

Stable charged Higgs [only toy hypothesis]

- MadEvent simulation as 2HDM with (meta–) stable H^{\pm}
- $-WW \rightarrow H^{\pm}H^{\pm}$ natural via *t*-channel H^0
- t channel Z forbidden or suppressed by ρ parameter
- \Rightarrow all $H^{\pm}H^{\pm}$ jet distributions like 500 GeV H^0

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Alternative Spin: Stable Vectors

Something like Little Higgs with T Parity [only toy hypothesis]

- MadEvent: heavy W', Z' bosons, (meta-) stable for now
- no fermionic couplings of W', Z'
- unitarity of $W^+W^- \rightarrow W'^{\pm}W'^{\mp}$: add *t*-channel H'
- compute WBF $W'^{\pm}W'^{\pm}$ production with *t*-channel H', Z'
- \Rightarrow clearly distinctive for fermion, scalar, vector

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Alternative Spin: Stable Vectors

Something like Little Higgs with T Parity [only toy hypothesis]

- MadEvent: heavy W', Z' bosons, (meta-) stable for now
- no fermionic couplings of W', Z'
- unitarity of $W^+W^- \rightarrow W'^{\pm}W'^{\mp}$: add *t*-channel H'
- compute WBF $W'^{\pm}W'^{\pm}$ production with *t*-channel H', Z'
- \Rightarrow clearly distinctive for fermion, scalar, vector

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Alternative Spin: Stable Vectors

Something like Little Higgs with T Parity [only toy hypothesis]

- MadEvent: heavy W', Z' bosons, (meta-) stable for now
- no fermionic couplings of W', Z'
- unitarity of $W^+W^- \rightarrow W'^{\pm}W'^{\mp}$: add *t*-channel H'
- compute WBF $W'^{\pm}W'^{\pm}$ production with *t*-channel H', Z'
- \Rightarrow clearly distinctive for fermion, scalar, vector

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook

Outlook

WBF and new physics

- maybe far shot depending on MSSM parameters...
- ...but exciting measurements of weak new-physics sector
- MSSM: Majorana nature of neutralinos from like-sign leptons
- scalars, fermions, vectors different in jet observables
- backup channel for heavy strongly interacting particles [Giudice, Han, Wang, Wang]
- definitely a case for an ILC
- any good idea why the W' looks the way it does???

> Tilman D. Plehnwater

WBF and SUSY

Stable Charginos

Stable Scalars

Stable Vectors

Outlook