Signatures of Heavy Gauge Boson in the Littlest Higgs Model with T-parity at Future Colliders

Chuan-Ren Chen Michigan State University

In Collaboration with Qing-Hong Cao (UC, Riverside)

Outline

- Model Littlest Higgs Model with T-parity (LHT)
- Signatures at the LHC
- Signatures at the LC
- Conclusion

Model -- LHT

SU(5) / SO(5) non-linear sigma model:

 $\frac{SU(5)}{[SU(2) \times U(1)]^2} \xrightarrow{f} \frac{SO(5)}{SU(2) \times U(1)}$

N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP **0207**, 034 (2002) H. C. Cheng and I. Low, JHEP **0309**, 051 (2003) H. C. Cheng and I. Low, JHEP **0408**, 061 (2004) I. Low, JHEP **0410**, 067 (2004) J. Hubsiz and P. Meade, PRD 71, 035016 (2005)

T-parity: $[SU(2) \times U(1)]_1 \iff [SU(2) \times U(1)]_2$

SM particles : light, T-even

T-parity partners of SM particles : heavy , T-odd

 $\Lambda \sim 4\pi f$

Relevant mass spectrum

- Parameters: λ_2 , κ (κ_1 , κ_3), f, m_h
- New Particles:

 an additional copy of SM Fermion, Gauge boson (T-odd)
 ①
 6 T-odd higgs boson, 1 T-odd Top partner, 1 T-even Top partner
- Relevant particle Mass spectrum :

$$A_{H} \sim \frac{g'}{\sqrt{5}} f \quad W_{H} \sim g f \quad q_{-} \sim \sqrt{2} \kappa_{q} f \quad L_{-} \sim \sqrt{2} \kappa_{l} f$$

take $f = 1 \text{ TeV} \quad \kappa_{q} = \kappa_{l} = 1 \quad \lambda_{2} = 1 \quad m_{h} = 120 \text{ GeV}$
Dark Matter $\sim A_{H} Z(W)_{H} \quad T \quad T_{-} \quad q(L)_{-} \quad \phi$

Production and Decay of W_H

Discovery Potential at the LHC

cuts: $p_T^e > 20 \, GeV, \ p_T^{\mu} > 20 \, GeV, \ | \ \eta^e | < 2.0, \ | \ \eta^{\mu} | < 2.0$ $E_T > 175 \, GeV, \ \cos \theta_{e\mu} < 0.6$

From LHC to LC

LHC : di-lepton + \mathcal{E}_{τ} Has a great discovery potential !! **BUT** ... \triangleright Can NOT determine masses of W_{μ} and A_{μ} **Can NOT reconstruct kinematics of** A_{μ} Can NOT measure the spin of W_{μ} $L_{H}C$: Can M_{H} determine masses of W_{H} and A_{H} **Can** Can Construct kinematics of A_H \sim Can \sim measure the spin of W_{μ} $e^+e^- \rightarrow W_H W_H \rightarrow A_H W(\rightarrow j j) A_H W(\rightarrow j j)$

LC Signature: 4 jets $+ \mathcal{E}_{\tau}$

Reconstruct W bosons

LC: kinematics distributions

normalized by total cross section

Reconstruct the mass of W_H , A_H

Effect of the detector resolution

Reconstruct the mass of W_{H}

Probing the Weak Boson Sector in e+ e- ---> W+ W-

K. Hagiwara, R. D. Peccei and D. Zeppenfeld, Nucl.Phys.B282:253,1987.

On shell condition momentum conservation known C.M. energy

reconstruct the kinematics of A_H

Spin of W_H

Spin of W_H after W-boson reconstruction

Conclusion

- * LHC: di-lepton + $\not\!\!{E}_{\tau}$
 - -- has a great potential to discover the signatures of W_H
 - -- can NOT reconstruct the masses of W_{μ} and A_{μ}
 - -- can NOT measure the spin of W_H

* LC: 4 jets + \not{E}_{τ}

- -- can reconstruct the mass of $W_H A_H$
- -- can reconstruct the momentum of missing particle A_H
- -- can measure the spin of W_{H}

distinguishing alternative models with dark matter candidates with different spin.

Backup slides

Constraints on Parameters

Constraints on Parameters: Heavy particles contribute to EW observables at one-loop level Exclusion contours: From lightest to darkest, the contours correspond to the 95, 99, and 99.9 confidence level exclusion. Hubisz et al, hep-ph/0506042

4-fermion operators (eeee, uudd, eedd)

$$\kappa_{l} \leq 8.6f/\text{TeV} \quad \kappa_{q} \leq 37.1f/\text{TeV}$$
$$\frac{\kappa_{l}^{2}\kappa_{q}^{2}}{\kappa_{l}^{2}-\kappa_{q}^{2}}\ln(\frac{\kappa_{l}}{\kappa_{q}}) \leq \frac{128\pi^{3}f^{2}}{(26.4\text{ TeV})^{2}}$$

Decay BR of WH

Xsection

Kinematics before cuts (LHC)

Kinematics after cuts -- LHC

Kinematics distributions after imputing cuts :

Reconstruction of M_wh

At the rest frame of W_h

$$M_{W_{H}} = \sqrt{\frac{s}{2}} \frac{\sqrt{E_{+}E_{-}}}{E_{+}+E_{-}} \sqrt{1 + \frac{m_{w}^{2}}{E_{+}E_{-}}} + \sqrt{(1 - \frac{m_{w}^{2}}{E_{+}^{2}})(1 - \frac{m_{w}^{2}}{E_{-}^{2}})}$$
$$M_{A_{H}} = M_{W_{H}} \sqrt{1 - 2\frac{(E_{+}+E_{-})}{\sqrt{s}} + \frac{m_{w}^{2}}{M_{W_{H}}^{2}}}$$

Further discriminate the signal from BG

