TESTING LORENTZ SYMMETRY VIOLATING NEUTRINO OSCILLATIONS[†]

K. Whisnant PHENO '07 Madison, WI 7May2007

- The Standard Model Extension (SME)
- \bullet Lorentz invariance and CPT violation in neutrinos
- The bicycle model
- Conclusions

[†] With V. Barger and D. Marfatia, in preparation

Sources for Lorentz invariance violation

- Minimal $SU(3) \times SU(2) \times U(1)$ SM is likely the low-energy limit of a more fundamental theory that includes some form of quantum gravity
- Natural scale for such a theory is the Planck mass, M_P
- Vestiges of underlying theory might remain at low energies, suppressed by M_P
- E.g., in a covariant string theory Lorentz symmetry can be spontaneously broken if tensor fields achieve a negative vev (Kostelecky & Samuel)
- Because Lorentz symmetry is broken spontaneously, the effective low-energy theory remains invariant under *observer* Lorentz transformations
- Likewise, 4-momentum conservation and gauge symmetry are also preserved
- Besides string theory, other possible sources include

Non-string quantum gravity

Non-commutative field theory

Standard Model Extension (SME) (Colladay & Kostelecky)

- Particle Lorentz transformations that leave background vevs unchanged may be affected
- Introduces new terms in equations of motion for a free particle

$$\begin{split} (i\Gamma_{ab}^{\nu}\partial_{\nu} - M_{ab})\nu_{b} &= 0 \qquad \text{a, b} = \text{ flavor indices} \\ \Gamma_{ab}^{\nu} &= \gamma^{\nu}\delta_{ab} + (c_{L}^{\mu\nu})_{ab}\frac{1}{2}\gamma_{\mu}(1-\gamma_{5}) + (c_{R}^{\mu\nu})_{ab}\frac{1}{2}\gamma_{\mu}(1+\gamma_{5}) + e_{ab}^{\nu} + i \ f_{ab}\gamma_{5} + \frac{1}{2}g_{ab}^{\lambda\mu\nu}\sigma_{\lambda\mu} \\ M_{ab} &= m_{ab} + im_{5ab}\gamma_{5} + (a_{L}^{\mu})_{ab}\frac{1}{2}\gamma_{\mu}(1-\gamma_{5}) + (a_{R}^{\mu})_{ab}\frac{1}{2}\gamma_{\mu}(1+\gamma_{5}) + \frac{1}{2}H_{ab}^{\mu\nu}\sigma_{\mu\nu} \end{split}$$

- SME: all Lorentz symmetry-breaking terms that preserve $SU(3) \times SU(2) \times U(1)$
- Corresponding Hamiltonian for ν_L propagation in SME:

$$(h_{eff})_{ab} = |\vec{p}| \,\,\delta_{ab} + \frac{(m^2)_{ab}}{2|\vec{p}|} + \frac{1}{|\vec{p}|} \left[(a_L)^{\mu} p_{\mu} - (c_L)^{\mu\nu} p_{\mu} p_{\nu} \right]_{ab}$$

- For $\bar{\nu}$, $a_L \rightarrow -a_L$ (*CPT* violation)
- *CPT* violation requires Lorentz invariance violation, but not vice versa (Greenberg)

• For relativistic $\nu \, {\rm 's,} \, |\vec{p}| \simeq E$ and $p^{\mu} = (E, -E \ \hat{p})$

$$(h_{eff})_{ab} = |\vec{p}| \,\,\delta_{ab} + \frac{(m^2)_{ab}}{2E} + \left[a_L^T + \vec{a}_L \cdot \hat{p} + E(c_L^{TT} + 2\vec{c}_L \cdot \hat{p} + \hat{p} \cdot \mathbf{c}_L \cdot \hat{p})\right]_{ab}$$

where

$$c_L^{\mu\nu} = \begin{pmatrix} c^{TT} & \vec{c}_L \\ \vec{c}_L^t & \mathbf{c}_L \end{pmatrix}$$

• a_L terms are energy-independent (dimensions of E), c_L terms proportional to E (dimensionless)

 a_L^T, c_L^{TT} are direction independent $\vec{a}_L, \vec{c}_L, \mathbf{c}_L$ are direction dependent

• Direction-dependent coefficients imply a preferred direction

$$\vec{a}_L = |\vec{a}_L| \hat{n}$$
$$\vec{a}_L \cdot \hat{p} = |\vec{a}_L| \hat{n} \cdot \hat{p}$$
$$\hat{n} \cdot \hat{p} \equiv \cos \Theta$$

Bicycle Model (Kostelecky & Mewes)

- \bullet Simple two-parameter model without ν mass
- Attempts to explain 1/E behavior in atmos ν osc. and E dependence in solar ν osc.
- Non-zero coefficients $(c_L^{TT})_{ee} = 2c$, $(\vec{a}_L)_{e\mu} = (\vec{a}_L)_{e\tau} = \frac{1}{\sqrt{2}}a \ \hat{n}$

$$h_{eff} = \begin{pmatrix} -2cE & \frac{1}{\sqrt{2}}a\cos\Theta & \frac{1}{\sqrt{2}}a\cos\Theta\\ \frac{1}{\sqrt{2}}a\cos\Theta & 0 & 0\\ \frac{1}{\sqrt{2}}a\cos\Theta & 0 & 0 \end{pmatrix}$$

• Eigenvalues
$$\lambda_i = 0, -cE \pm \sqrt{(cE)^2 + a^2 \cos^2 \Theta}$$
 $\lambda_i - \lambda_j = \Delta_{ij} = \frac{1}{2E} (\delta m_{eff}^2)_{ij}$

• Mixing matrix

$$U = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ -\frac{1}{\sqrt{2}}\sin\theta & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\cos\theta \\ -\frac{1}{\sqrt{2}}\sin\theta & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\cos\theta \end{pmatrix}, \qquad \sin\theta = \frac{1}{\sqrt{2}}\sqrt{1 - \frac{cE}{\sqrt{(cE)^2 + a^2\cos^2\Theta}}}$$

•
$$\theta_{13} = \theta, \theta_{23} = \frac{\pi}{4}, \theta_{12} = 0$$

Atmospheric and Long-Baseline (LBL) Neutrinos

• In large E limit ($cE \gg a$) there is a see-saw mechanism

$$\Delta_{32} \simeq a^2 \cos^2 \Theta / (2cE)$$

$$\Delta_{31} \simeq \Delta_{21} \simeq 2cE$$

$$\sin^2 \theta \simeq a^2 \cos^2 \Theta / (4c^2 E^2) \lesssim 5 \times 10^{-5} \text{ for } E = 1 \text{ GeV}$$

• Oscillation probabilities

$$\begin{split} P(\nu_{\mu} \to \nu_{\tau}) &= \sin^2(\Delta_{32}\frac{L}{2}) \implies \text{maximal mixing!} \\ P(\nu_e \to \nu_{\mu}) &= P(\nu_e \to \nu_{\tau}) = \sin^2\theta \sin^2(\Delta_{31}\frac{L}{2}) \implies \text{very small mixing} \end{split}$$

• Define $a^2/c \equiv m_0^2$

$$\implies$$
 $(\delta m_{eff}^2)_{32} = m_0^2 \cos^2 \Theta$ (independent of *E*, but not \hat{n} and \hat{p})

• Must determine $\cos \Theta$

- \bullet Detector position on Earth defined by (θ,ϕ) w.r.t equatorial celestial coordinates
 - \hat{r} : upward $\hat{ heta}$: south $\hat{\phi}$: east $heta_L = \frac{\pi}{2} - heta =$ latitude of detector ϕ depends on time of *sidereal* day
- In these coordinates, ν direction is

(w.r.t. celestial coord.)

- $\hat{p} = -\cos\beta \,\hat{r} + \sin\beta(-\sin\alpha \,\hat{\theta} + \cos\alpha \,\hat{\phi})$
- $\beta = \text{zenith angle of } \nu \ (\beta = 0 \text{ for downward event})$
- $\alpha = \text{compass direction of } \nu$ velocity projected onto plane tangent to Earth's surface
- ($\alpha = 0$ for eastward event)
- Preferred direction: $\hat{n} = \sin \xi \cos \chi \ \hat{X} + \sin \xi \sin \chi \ \hat{Y} + \cos \xi \ \hat{Z}$, \hat{Z} is North
- \bullet Choose $\phi=0$ reference point in preferred direction

• Angular dependence: preferred direction, neutrino direction, detector position

$$\hat{n} \cdot \hat{p} = \cos \Theta = \cos \xi (\sin \beta \sin \alpha \cos \theta_L - \cos \beta \sin \theta_L) - \sin \xi (\sin \beta \sin \alpha \sin \theta_L \cos \phi + \cos \beta \cos \theta_L) - \sin \xi \sin \beta \cos \alpha \sin \phi$$

• Special cases

$$Downward(\beta = 0): \cos \Theta = -(\cos \xi \sin \theta_L + \sin \xi \cos \theta_L \cos \phi)$$
$$Upward(\beta = \pi): \cos \Theta = (\cos \xi \sin \theta_L + \sin \xi \cos \theta_L \cos \phi)$$
$$Horizontal(\beta = \frac{\pi}{2}): \cos \Theta = \cos \xi \cos \theta_L \sin \alpha - \sin \xi (\sin \theta_L \cos \phi \sin \alpha + \sin \phi \cos \alpha)$$

• Upward and downward events have same $\cos^2\Theta \implies$ same δm^2_{eff}

Case 1: $\xi = 0$ (Kostelecky & Mewes)

• $\cos^2 \Theta = (\sin \beta \sin \alpha \cos \theta_L - \cos \beta \sin \theta_L)^2$ (independent of time of day)

Atmos ν up/down events : $\cos^2 \Theta = \sin^2 \theta_L$ LBL (K2K or MINOS) : $\cos^2 \Theta = \sin^2 \alpha \cos^2 \theta_L$

• Can infer value of $m_0 = a^2/c$ from each experiment

Experiment	$ heta_L$	α	$\cos^2 \Theta$	$m_0^2 = \delta m_{exp}^2 / \cos^2 \Theta$
SuperK up/down	36°	_	3.5×10^{-1}	$7.0 imes 10^{-3} \text{ eV}^2$
K2K	36°	174°	7.2×10^{-3}	$4.0 \times 10^{-1} \ \mathrm{eV}^2$
MINOS	48°	124°	4.5×10^{-1}	$8.0 imes 10^{-3} \text{ eV}^2$

• Inferred values of m_0^2 inconsistent $\Longrightarrow \xi = 0$ ruled out!

- K2K/MINOS: similar situation with $\theta_L \rightarrow \alpha$
- Horizontal atmospheric ν events have complicated compass and time-of-day dependence

• Atmos ν 's/MINOS: Large fluctuations in δm^2_{eff} during day For $36^\circ \lesssim \xi \lesssim 144^\circ$, $\delta m^2_{eff} = 0$ twice per day

• Hard to test without data vs. sidereal time

Solar ν 's

• Include matter effects ($N_e = e$ number density)

$$h_{eff} = \begin{pmatrix} \sqrt{2}G_F N_e - 2cE & \frac{1}{\sqrt{2}}a\cos\Theta & \frac{1}{\sqrt{2}}a\cos\Theta \\ \frac{1}{\sqrt{2}}a\cos\Theta & 0 & 0 \\ \frac{1}{\sqrt{2}}a\cos\Theta & 0 & 0 \end{pmatrix}$$

- resonance occurs for $\sqrt{2}G_FN_e = 2cE$
- $\bullet~c\sim 10^{-19}~{\rm gives}$ resonance in sun
- For adiabatic propagation, $N_e^0 =$ initial N_e

$$P(\nu_e \to \nu_e) = \cos^2 \theta \cos^2 \theta_0 + \sin^2 \theta \sin^2 \theta_0$$

= $\frac{1}{2} + \frac{1}{2} \frac{cE(cE - G_F N_e^0 / \sqrt{2})}{\sqrt{(cE)^2 + a^2 \cos^2 \Theta} \sqrt{(cE - G_F N_e^0 / \sqrt{2})^2 + a^2 \cos^2 \Theta}}$

• For ν 's starting above resonance, $P < \frac{1}{2}$

• Position of minimum in probability fixed by c:

$$E_{min} = \frac{G_F N_e^0}{2\sqrt{2}} \frac{1}{c}$$

 $\bullet~{\rm No}~E$ dependence seen in $^8{\rm B}~\nu{\rm 's}$

In order to fit data, E_{min} must lie in middle of SuperK and SNO spectra $E_{min} \simeq 10 \text{ MeV} \implies c \simeq 1.7 \times 10^{-19}$ (independent of ν direction)

• Probability at minimum fixed by $|a \cos \Theta|$ (depends on neutrino direction)

$$\hat{p} = \cos\psi \,\hat{X}' + \sin\psi \,\hat{Y}' = \cos\psi \,\hat{X} + \sin\psi(\cos\eta \,\hat{Y} + \sin\eta \,\hat{Z})$$
$$\cos\Theta = \hat{n} \cdot \hat{p} = \cos\psi\cos\chi\sin\xi + \sin\psi(\sin\chi\sin\xi\cos\eta - \cos\xi\sin\eta)$$

• Averaged over year, $\langle P_{min} \rangle$ depends on a and preferred direction (ξ, χ)

$$\langle P_{min} \rangle = \frac{1}{2} \left[1 - \frac{G_F N_e^0}{\sqrt{(G_F N_e^0)^2 + 8a^2 D^2}} \right] \qquad D^2 \equiv \cos^2 \chi \sin^2 \xi + (\sin \chi \sin \xi \cos \eta - \cos \xi \sin \eta)^2$$
$$\langle P_{min} \rangle \simeq 0.34 \qquad \Longrightarrow \qquad a = (5.0 \times 10^{-12} \text{ eV})/D$$

Annual variations in solar ν probability

- Remember for solar ν 's
 - $\cos \Theta = \cos \chi \sin \xi \cos \psi$ $+(\sin \chi \sin \xi \cos \eta \cos \xi \sin \eta) \sin \psi$ $\equiv A \cos \psi + B \sin \psi$
 - If $A \equiv D \sin \delta$, $B \equiv D \cos \delta$ and $D \equiv \sqrt{A^2 + B^2}$, then

 $\cos\Theta = D\sin(\psi + \delta)$

- Always have $\cos \Theta = 0$ twice during year ($\psi = -\delta$ and $\pi - \delta$)
- $P_{min} = 0$ for ν 's starting above resonance

• Can show

$$0 \leq P_{min} \leq 2\langle P_{min} \rangle (1 - \langle P_{min} \rangle) \simeq 0.45$$

$$0 \leq \frac{P_{min}}{\langle P_{min} \rangle} \leq 2(1 - \langle P_{min} \rangle) \simeq 1.32$$

Test annual variation with SNO data

• SNO measured time dependence of combined data (CC + NC + ES + Bckgrd)

$$R = \frac{N(t)}{\langle N \rangle} = \frac{N_{NC}^0 + N_{CC}^0 P + N_{ES}^0 [P + r(1 - P)] + N_B^0}{N_{NC}^0 + N_{CC}^0 \langle P \rangle + N_{ES}^0 [\langle P \rangle + r(1 - \langle P \rangle)] + N_B^0} \qquad r = \frac{\sigma_{NC}}{\sigma_{CC}} \simeq \frac{1}{6.48}$$

• D_2O phase (572 d) $N_{CC}: N_{NC}: N_{ES}: N_B = 1968: 576: 264: 116$

• Salt phase (763 d) $N_{CC}: N_{NC}: N_{ES}: N_B = 2176: 2010: 279: 257$

- SNO data clearly shows $1/r^2$ dependence due to Earth's eccentric orbit
- For $\langle P_{min} \rangle = 0.34$, bicycle model predicts $0.42 \le R \le 1.19$ \implies direction-dependent bicycle model excluded by SNO data!

Direction-independent bicycle model

- Replace $(\vec{a}_L)_{e\mu} = (\vec{a}_L)_{e\mu}$ with $(a^T)_{e\mu} = (a^T)_{e\tau} = a/\sqrt{2}$
- Equivalent to $\cos \Theta \equiv 1$ in direction-dependent case
- Atmos and LBL now agree

 \Rightarrow

 $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2(\delta m_{eff}^2 L/4E) \quad \text{ with } \quad \delta m_{eff}^2 = a^2/c$

• No annual variation in solar ν 's

$$\begin{split} E_{min} &= \frac{G_F N_e^0 1}{2\sqrt{2} c} \simeq 10 \text{ MeV} \implies c = 1.7 \times 0^{-19} \\ P_{min} &= \frac{1}{2} \frac{8a^2}{8a^2 + (G_F N_e^0)^2} \simeq 0.34 \implies a = 2.5 \times 10^{-12} \text{ eV} \\ \text{predicts } \delta m_{atm}^2 &= 3.6 \times 10^{-5} \text{ eV}^2 \end{split}$$

Inconsistent with measured values for atmos and LBL ν 's

• Alternatively $a^2/c \simeq 2.5 \times 10^{-3} \text{ eV}^2 \implies a = 2.1 \times 10^{-11} \text{ eV} \implies P_{min} = 0.497$

Inconsistent with P = 0.34 in SNO

Open questions

• Partial direction dependence?

 $(a_L)^{\mu} p_{\mu} / E \to a^T \pm |\vec{a}| \cos \Theta$

Lack of annual variation in SNO $\implies |\vec{a}|^2 \ll (a^T)^2$

Similar to direction-independent case

Preliminary indications are that this case is also ruled out

• Other direction-independent models

Can other 3- ν textures for h_{eff} (including cE, a, and m^2/E terms) produce the proper E dependence for both solar and atmos ν 's?

Difficult to produce a see-saw for atmos ν 's and proper E dependence for solar ν 's

Conclusions

- SME allows new terms in effective Hamiltonian for ν propagation
- Different energy dependence from ordinary oscillations (cE, a vs. m^2/E)
- Bicycle model has no ν mass terms, but reproduces 1/E dependence at high E from see-saw

Pure direction-dependent case ruled out from lack of annual variation in SNO data

Pure direction-independent case ruled out from conflict between solar and atmos u data

- Large parameter space remains
- Direction-dependent models face severe experimental constraints