Breakdown of the Narow WiAth

 Approximation in BSM Mehries4ssumptions and Definition
Effective Branching Ratio

- Cascade 'Super - Enhancement

hep-ph/0703058

Narrow Width Approximation

- Assumptions:
- Separability of the Propagator
\rightarrow Resonant Diagrams Only
- Massless Final State $m \ll M$
- $\sqrt{\hat{s}}-m \gg \Gamma$
- $\Gamma \ll M$
- $R=\frac{\sigma_{O F S}}{\sigma_{N W A}} \sim \log (s), \log (m)$

$$
\begin{aligned}
& \int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2}\left|\frac{1}{q^{2}-m^{2}+i m \Gamma}\right| \\
= & \int_{q_{\min }^{2}-m^{2}}^{q_{\max }^{2}-m^{2}}\left\{\frac{d x}{x^{2}+(m \Gamma)^{2}}\right\} \\
\cong & \int_{-m^{2}}^{s-m^{2}}\{ \} \begin{array}{l}
q_{\max }^{2} \rightarrow s \\
q_{\min }^{2} \rightarrow 0
\end{array} \\
\approx & \left.\int_{-\infty}^{\infty}\{ \} \begin{array}{c}
s \rightarrow \infty \\
m^{2} \rightarrow \infty
\end{array}\right\} \frac{\pi}{m \Gamma}
\end{aligned}
$$

- Violations typically vary with $\frac{m}{M}$
- $(R-1) \sim \mathcal{O}\left(\operatorname{man} y \times \frac{\Gamma}{M}\right)^{M}$ even for moderate

Effective Branching Ratio

$B R=\frac{\sigma_{N W A}}{\sigma_{2 \rightarrow 2}} \rightarrow B R_{\text {naive }}=\frac{\sigma_{O F S}}{\sigma_{2 \rightarrow 2}}$

- Proper: $B R_{e f f}=\frac{\sigma_{O F S}}{\sigma_{T o t}}$
- Assume only i decay violates NWA

$$
B R_{e f f}=\frac{\sigma_{O F S}}{\sigma_{O F S}+\left(\frac{\Gamma_{i}}{\Gamma_{i}+\Gamma_{b}} \times \sigma_{2 \rightarrow 2}\right)}
$$

- If $\mathrm{R}_{-\mathrm{I}}, B R_{\text {eff }} \approx B R_{\text {naive }}$ $\frac{B R_{\text {eff }}}{B R_{\text {naive }}}$ near I if:
- A rare decay mode has $\frac{m}{M} \sim I$
- Common b.c. PS suppresses $\frac{m}{M} \sim I$ modes
- Scan over $\frac{m}{M}$ Compare w/ R
- Assume ist 2 generations of squark degenerate

- Shaded region $=$ SPS points
- Decay/Cascade Tools (e.g. SDECAY, PYTHIA..) ignore this

Multiple Successive Decays

- Real processes cascade
- Multiple Breit-Wigners
- How does this change things?

-When? Need multiple degeneracies?
$\longleftarrow \mathrm{SSV}$
CF
\downarrow
\rightarrow
$\bar{d} \rightarrow 200_{b_{2}}^{d_{1}} 5_{t_{1}}^{\bar{d}}$

"Super-Enhancement": Origin

If $\mathrm{R}_{\mathrm{I}}>\mathrm{I}$ and m can vary:
If $\frac{m}{M} \rightarrow \mathrm{I}$ and m can vary,

- OFS enhancement enhances high tail, PS suppression kills it

Energy Dependance

Process@LHC	R	$\frac{B R_{\text {eff }}}{B R_{\text {naive }}}$	
	1-level	r.16	1.16
SSV	2-level	3.36	3.37
SFF	2-level	r.04	1.06

"Super-Enhancement": Behavior

- For large $\frac{m}{M}$, 2nd decay suppresses R

$$
\mathrm{BRR}=\frac{B R_{\text {eff }}}{B R_{\text {naive }}}
$$

Left-Right Asymmetry

- $\sigma_{2 \rightarrow 2} \times B R$ is helicity-neutral
- Chargino choses left coupling
- Helicity pref carried through
- Gluino mass can flip, but doesn't equalize

$$
A_{L R}=\frac{\sigma \widetilde{q_{L}}-\sigma \widetilde{q_{R}}}{\sigma_{\tilde{q}_{L}}+\sigma \widetilde{q_{R}}}
$$

- $\frac{m}{M}<.3$ (light squark) disfavored
- $\frac{m}{M}>.8$ effect may be observable

Conclusions

- NWA often dramatically invalid in BSM physics
- Modified BRs could confuse Model ID
- Large effects from successive decays
- Cannot parametrize effect of addition decays
- Left-Right Asymmetry could confuse coupling measurement / Model ID
- Cannot trust NWA with massive spectra.

