Compressed SUSY at Tevatron: possibility to probe beyound LEP2

Azar Mustafayev

in collaboration with H.Baer, S.Profumo, X.Tata PRD75 (2007)

Gaugino mass terms in MSSM

- mSUGRA has minimal gauge kinetic function f_{AB} \rightarrow equal gaugino masses at GUT scale
- Motivation for gaugino mass non-universality:
 - ▶ non-minimal f_{AB} in SUGRA models, e.g. $f_{AB} \ni 1$, 24, 75, 200 in SU(5) SUSY GUTs
 - various string models, e.g. KKLT model
 - extra-dim SUSY GUTs with gaugino mediated SUSY breaking, e.g. Dermisek-Mafi SO(10) model
- → Adopt independent gaugino masses at GUT scale
 - ▶ $M_1 \text{ or } M_2 \neq m_{1/2}$ MWDM and BWCA scenarios
 - $\blacktriangleright |M_3| \ll M_1 \simeq M_2$

Also Belanger et al (2005), Mambrini and Nezri (2005), Martin (2007

Sparticle mass spectrum

- Mass scale of squarks and sleptons less hierarchical
 - compressed SUSY
- Lighter gluino
- Very light stop
- Small $M_3 \rightarrow \text{smaller } m_{\tilde{q}} \rightarrow \text{small } |\mu|$
 - \blacktriangleright \widetilde{Z}_1 is mixed bino-higgsino
 - Small $\widetilde{Z}_2 \widetilde{Z}_1$ and $\widetilde{W}_1 \widetilde{Z}_1$ mass gaps (~ 50 GeV)

Parameter space

- By lowering M_3 any point in para space can be WMAP allowed
- Lighter gluinos expected in LM3DM \rightarrow larger pair production e.g. $m_{\tilde{g}} \simeq 183$ GeV for $m_{1/2} = 250$ GeV $\sigma(p\bar{p} \rightarrow \tilde{g}\tilde{g}) \simeq 20$ pb (in mSUGRA $m_{\tilde{g}} \simeq 400$ GeV and $\sigma(p\bar{p} \rightarrow \tilde{g}\tilde{g}) \simeq 30$ fb)
- Heavy squarks at large m₀ and large higgsino component
 → ğ → qq̄Z̃_i suppressed
 → ğ → gZ̃_i dominate

LM3DM: $M_3 \le m_{1/2}$, $tan\beta=10$, $A_0=0$, $\mu > 0$, $m_t=175~GeV$

Parameter space

- By lowering M_3 any point in para space can be WMAP allowed
- Lighter gluinos expected in LM3DM \rightarrow larger pair production e.g. $m_{\tilde{g}} \simeq 183$ GeV for $m_{1/2} = 250$ GeV $\sigma(p\bar{p} \rightarrow \tilde{g}\tilde{g}) \simeq 20$ pb (in mSUGRA $m_{\tilde{g}} \simeq 400$ GeV and $\sigma(p\bar{p} \rightarrow \tilde{g}\tilde{g}) \simeq 30$ fb)
- Heavy squarks at large m₀ and large higgsino component
 → g̃ → qq̄Z̃_i suppressed
 → g̃ → gZ̃_i dominate

- $p\bar{p} \rightarrow \tilde{g}\tilde{g}$, $\tilde{g} \rightarrow g\widetilde{Z}_i$
- Backgrounds:
 - $t\bar{t}, W+jets, Z+jets$

- $p\bar{p} \rightarrow \tilde{g}\tilde{g}, \, \tilde{g} \rightarrow g\widetilde{Z}_i$
- Backgrounds: $t\bar{t}, W + jets, Z + jets$
- Run I: $m_{\tilde{g}} > 200 \text{ GeV}$ D0 Run II: $m_{\tilde{g}} \ge 233 \text{ GeV}$
- mSUGRA: $m_{\tilde{g}} \sim 3.5 \ m_{\widetilde{W}_1}$

Azar Mustafayev

"Compres

- $p\bar{p} \rightarrow \tilde{g}\tilde{g}, \, \tilde{g} \rightarrow g\widetilde{Z}_i$
- Backgrounds: $t\bar{t}, W + jets, Z + jets$
- Run I: $m_{\tilde{g}} > 200 \text{ GeV}$ D0 Run II: $m_{\tilde{g}} \ge 233 \text{ GeV}$
- mSUGRA: $m_{\tilde{g}} \sim 3.5 \ m_{\widetilde{W}_1}$
- LM3DM: $m_{\tilde{g}} \sim 1.7 \ m_{\widetilde{W}_1}$

- $p\bar{p} \rightarrow \tilde{g}\tilde{g}$, $\tilde{g} \rightarrow g\widetilde{Z}_i$
- Backgrounds: $t\bar{t}, W + jets, Z + jets$
- Run I: $m_{\tilde{g}} > 200 \text{ GeV}$ D0 Run II: $m_{\tilde{g}} \ge 233 \text{ GeV}$
- mSUGRA: $m_{\tilde{g}} \sim 3.5 \ m_{\widetilde{W}_1}$
- LM3DM: $m_{\tilde{g}} \sim 1.7 \ m_{\widetilde{W}_1}$
- Reach: $m_{\tilde{g}} \sim 320 \text{ GeV}$ ($m_{\widetilde{W}_1} \sim 170 \text{ GeV}$)

$jets + dilepton + E_T^{miss}$ channel

• $p\bar{p} \to \tilde{g}\tilde{g}, \, \tilde{g} \to g\widetilde{Z}_i$ $\widetilde{Z}_i \to \widetilde{Z}_1 l\bar{l}$

 $jets + dilepton + E_T^{miss}$ channel

- $p\bar{p} \to \tilde{g}\tilde{g}, \ \tilde{g} \to g\widetilde{Z}_i$ $\widetilde{Z}_i \to \widetilde{Z}_1 l\bar{l}$
- Bkgd (25 *fb*): *tt*, *Z* + *jets*, *WW*, *WZ*, *ZZ*
- Cuts: $E_T^{miss} > 75$ GeV b veto (50%) ≥ 2 central jets 2 OS/SF leptons

• Reach to
$$m_{1/2} \sim 310 - 320 \text{ GeV}$$

$jets + dilepton + E_T^{miss}$ channel

- $p\bar{p} \to \tilde{g}\tilde{g}, \, \tilde{g} \to g\widetilde{Z}_i$ $\widetilde{Z}_i \to \widetilde{Z}_1 l\bar{l}$
- Bkgd (25 *fb*): *tt*, *Z* + *jets*, *WW*, *WZ*, *ZZ*
- Cuts: $E_T^{miss} > 75 \text{ GeV}$ b veto (50%) $\geq 2 \text{ central jets}$ 2 OS/SF leptons
- Reach to $m_{1/2} \sim 310 320 \text{ GeV}$
- Detectable $m_{\widetilde{Z}_i} m_{\widetilde{Z}_1}$ mass edges

Conclusions

- Reducing $|M_3|$ allows \widetilde{Z}_1 relic density consistent with WMAP in almost any point of para space
- Bino-higgsino \widetilde{Z}_1 enhances DM detection prospects
- Compressed spectrum with lighter squarks and gluino
- Tevatron search in $jets + E_T^{miss}$ channel with $5 fb^{-1}$ can probe up to $m_{1/2} = 350$ GeV which corresponds to $m_{\tilde{g}} \sim 320$ GeV and $m_{\widetilde{W}_1} \sim 170$ GeV
- Small μ makes \widetilde{Z}_2 and \widetilde{Z}_3 accessible via gluino decays observable mass edges in Tevatron search in $jets + dilepton + E_T^{miss}$ channel

Cuts for $jets + E_T^{miss}$

cut	$2j + E_T^{miss}$	$3j + E_T^{miss}$	$4j + E_T^{miss}$
$\Delta \phi(j_1,j_2)$	$< 165^{\circ}$	$< 165^{\circ}$	$< 165^{\circ}$
isol. lep. veto	yes	yes	yes
n_j	≥ 2	≥ 3	≥ 4
$ \eta_{j_i} < 0.8$	j_1,j_2	j_1,j_2,j_3	j_1,j_2,j_3,j_4
$\Delta \phi(E_T^{miss}, j_1)$	$80^{\circ} - 150^{\circ}$	$80^{\circ} - 150^{\circ}$	$80^{\circ} - 150^{\circ}$
$\Delta \phi(E_T^{miss}, j_2)$	$50^{\circ} - 150^{\circ}$	$50^{\circ} - 150^{\circ}$	$60^{\circ} - 150^{\circ}$
E_T^{miss}	$\geq 120 { m ~GeV}$	$\geq 100 { m ~GeV}$	$\geq 75 { m ~GeV}$
	$\geq 175 { m ~GeV}$	$\geq 100 { m ~GeV}$	$\geq 75~{\rm GeV}$
H_T	$\geq 220 { m ~GeV}$	$\geq 150 { m ~GeV}$	
	$\geq 275 { m ~GeV}$	$\geq 350 { m ~GeV}$	$\geq 225~{\rm GeV}$
$E_T(jets)$	• • •	• • •	

Effect of $\tan \beta$

