Detect Nearly Degenerate Gauginos at LHC

Kai Wang

Phenomenology Institute Department of Physics University of Wisconsin

PHENO 07

In Collaboration with G.F. Giudice, Tao Han and Liantao Wang

Nearly Degenerate: Theoretical Motivation

Nearly Degenerated Gauginos

$$\Delta = m_{\chi_1^{\pm}} - m_{\chi_1^0}; \qquad (m_{\chi_2^0}, (m_{\chi_3^0}) \sim m_{\chi_1^{\pm}})$$

Already studied: Wino LSP in AMSB Chen, Drees and Gunion, 1996; Feng et al.1999 $M_2 < M_1, \ \Delta \sim m_\pi$

$$\Gamma_{\chi_1^\pm} \sim 10^{-22} {
m ~GeV}$$

signature: Charge track

Cases Studied: well-tempered neutralino Arkani-Hamed, Delgado, Giudice, 2006

- Bino-Wino LSP $M_1 \simeq M_2$, $\Delta \sim \mathcal{O}(\text{GeV})$
- Bino-Higgsino LSP $M_1 \simeq \mu$, $\Delta \sim \mathcal{O}(\text{GeV})$

$$\Gamma_{\chi_1^\pm} \sim 10^{-9}~{
m GeV}$$

Nearly Degenerate: Phenomenology Challenge

• lepton p_T : too soft below acceptance ($p_T > 10 \text{ GeV}$)

・ロト ・ 一下・ ・ 日 ・ ・ 日

• triggering a ISR jet and $\not\!\!{E_T}$?

MonoJet + $\chi\chi$

SCONSIN

Large QCD background with similar kinematic feature.

- jZ with $Z \rightarrow \text{invisible}$
- *jW* leptonic decay but soft leptons (*W* decay also τ three body decay.)

・ロト ・回ト ・ヨト ・ヨト

More Jets: Gluino Pair

Possible Signature

- DY Gaugino pairs with ISR
- Gauginos decay from squark pair (not dicuss here, decoupled squarks)
- Gauginos decay from gluino pair

To have more kinematic handle Gaugino pairs from WBF

- QCD background is big but under control
- EW very similar kinematics except $\not E_T$

For signal DY with ISR two jets, not included in presentation now, to be included

(日)

Possible Signature

- DY Gaugino pairs with ISR
- Gauginos decay from squark pair (not dicuss here, decoupled squarks)
- Gauginos decay from gluino pair

To have more kinematic handle Gaugino pairs from WBF

- QCD background is big but under control
- EW very similar kinematics except $\not \! E_T$

For signal DY with ISR two jets, not included in presentation now, to be included

(日)

Sample Spectrum

Mixed Bino-Wino LSP

$$egin{aligned} M_1 &= M_2 = 90 \ {
m Gev}, M_3 = 600 \ {
m GeV} \ \mu &= 1 \ {
m Tev} \ taneta &= 2 \ M_{ ilde{t}} &= 5 \ {
m TeV} \end{aligned}$$

$$m_{\chi_1^0} = 85.4 \text{ GeV}, m_{\chi_1^{\pm}} = 92.5 \text{ GeV}, \Delta = 7 \text{ GeV}$$

Signal

- **1** Two tagging Jets $+ \not E_T$
- **2** Two tagging Jets $+ \not{E}_T +$ soft muons

Similiar signature

1 Invisible Higgs Eboli, Zeppenfield, 2000

2 wino LSP Datta, Konar, Mukhopadhyaya,2001

Background

1 2 Jets + Z with $Z \rightarrow \nu \bar{\nu}$ Br($Z \rightarrow \text{invisible}$) ~ 20%

2 Jets + single W[±] with vetoing central lepton
 W[±] → νX with 30% BR No lepton within
 P_T > 10GeV, |η| < 3.0 (W → Jets are not considered because of 𝒫_T cut

3 SUSY Background $ilde{q}
ightarrow q\chi_1^0$ (decoupled squarks)

$$lpha_{s}(\mu_{R}),\ \mu_{R}=\sqrt{[(p_{T}^{j1})^{2}+(p_{T}^{j2})^{2}+{\cal E}_{T}^{2}]/3},\ \mu_{F}=\sqrt{\hat{s}/4}$$

A D F A B F A B F A B F

Tools

- HELAS 3
- SMadGraph
- Sample Monte Carlo Integration

Basic Cuts

acceptance

- $\not\!\!{E_T} > 100~{
 m GeV}$
- $p_T^j > 30 \text{ GeV}$
- $|\eta_j| < 5.0$
- $\Delta R_{jj} > 0.4$

Cuts to be Improved

ヘロン ヘロン ヘビン ヘビン

$$|\eta_{j_1} - \eta_{j_2}|$$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

 $|\eta_{j1} - \eta_{j2}| > 4.4$

$\eta_{j_1}\eta_{j_2}$

ヘロン ヘロン ヘビン ヘビン

 $\eta_{j1}\eta_{j2} < 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $M_{jj} > 1200 {
m ~GeV}$

 p_T^j

・ロト ・日下・ ・ 日下

< ≣⇒

 $p_T^j > 60~{\rm GeV}$

Another handle $\Delta \phi_{jj}$

May hurt signal...

Central Jet Vetoing

(日)、

No color connection between two Jets QCD activity in central region veto events with additional Jets(not the two tagging jets

- Zjj QCD: $P_{\rm surv} = 28\%$
- Wjj QCD: $P_{\rm surv} = 28\%$
- Zjj EW: $P_{\rm surv} = 82\%$
- *Wjj* EW: $P_{\rm surv} = 82\%$
- $\chi \chi j j$ WBF: $P_{\rm surv} = 82\%$

Rainwater, Ph.D. thesis 1999

$\underset{\rm 100 fb^{-1}}{\rm Results}$

(日) (四) (三) (三) (三)

Processes (fb)	Basic Cuts	η cut	ϵ	M _{JJ} cut	ε	p_T^J cut	ϵ	p_T^ℓ
$\chi_1^+\chi_1^-$ jj	14.04	6.21	44%	4.67	75%	4.15	89%	1.017
$\chi_{1}^{\pm}\chi_{2}^{0}jj$	25.98	6.86	26%	5.41	79%	3.97	73%	2.034
$\chi_{1}^{\pm}\chi_{1}^{\pm}jj$	15.01	5.66	38%	4.69	83%	3.66	78%	1.764
$\chi_{1}^{\pm}\chi_{1}^{0}jj$	2.63	1.05	40%	0.80	76%	0.59	74%	
Total	57.66	19.78		15.57		12.37		4.82
$P_{ m surv}\sigma$	47.28	16.22		12.76		10.14		3.95
Zjj (EW)	1404	170	12 %	117.8	69%	87.1	74%	
$P_{\rm surv}\sigma$	1151.3	139.4		96.6		71.4		
Zjj (QCD)	124.5 pb	3130	2.5%	967.9	31%	519.8	54%	
$P_{\rm surv}\sigma$	34.8 pb	876.4		271		145.5		
<i>Zjj</i> Total	159.3 pb	1015.8		367.6		216.9		216.9
Wjj (EW)	199.3	37.9	19%	26.6	70 %	19.6	74%	9.12
$P_{\rm surv}\sigma$	163.4	31.0		21.8		16.1		7.48
Wjj (QCD)	21.4 pb	631.2	2.9%	228.0	36%	121.2	53%	87.63
$P_{\rm surv}\sigma$	5.99 pb	176.7		63.8		33.9		24.54
<i>Wjj</i> Total	6.15 pb	207.7		85.6		50.0		32.0
Total BG	165.5pb	1192.5		453.2		266.9		248.9
S/B	0.028%	1.36%		2.8 %		3.8%		1.6 %
S/\sqrt{B}				6σ		6.2σ		2.5σ

Table: Summary Table for Invisible Channels, all numbers are in fb unless noted explicitly, η , M_{JJ} and p_T^J cuts

э

Muons

ヘロン ヘロン ヘビン ヘビン

 $\Delta R_{\ell J}^{\min} > 2.0$

Result: soft muons

$p_{T}^{\ell} > 3 ~\mathrm{GeV}, \quad |\eta_{\ell}| < 3.0, \quad E_{\ell} < 15 ~\mathrm{GeV}, \Delta R_{\ell J}^{\mathrm{min}} > 1.0$

Processes (fb)	Cuts	$\Delta R_{\ell J}^{\min}$	e	
$\chi_{1}^{+}\chi_{1}^{-}$ <i>jj</i>	0.50	0.44	88%	
$\chi_{1}^{\pm}\chi_{2}^{0}jj$	0.96	0.79	82%	
$\chi_1^{\pm}\chi_1^{\pm}jj$	0.51	0.46	90%	
Total	1.97	1.68		
$P_{ m surv}\sigma$	1.62	1.37		
Wjj (EW)	4.53	3.02	67%	
$P_{\rm surv}\sigma$	3.71	2.48		
Wjj (QCD)	35.67	23.04	64%	
$P_{surv}\sigma$	9.99	6.45		
Total BG	13.7	8.92		
S/B	11.7%	15.3%		
S/\sqrt{B}	4.38σ	4.59 σ		

Table: Summary Table for Tagging soft muon Channels

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Soft Muon: Continued and Combined with Invisible Channel

Processes (fb)	Cuts	$\Delta \phi_{JJ}$ cuts	ε	$\Delta \eta_J$ cut	ϵ	$\Delta R_{\ell J}^{\min}$	ε	p_T^ℓ
$\chi_{1}^{+}\chi_{1}^{-}jj$	0.50	0.15	30%	0.40	80%	0.37	93%	0.21
$\chi_{1}^{\pm}\chi_{2}^{0}jj$	0.96	0.18	19%	0.60	63%	0.54	90%	0.44
$\chi_{1}^{\pm}\chi_{1}^{\pm}jj$	0.51	0.14	32%	0.42	95%	0.39	93%	0.32
Total	1.97	0.47		1.42		1.3		0.97
$P_{ m surv}\sigma$	1.56	0.39		1.16		1.07		0.79
Wjj (EW)	4.53	0.57	13%	2.93	65%	2.42	83%	1.69
$P_{\rm surv}\sigma$	3.71	0.47		2.40		1.98		1.38
Wjj (QCD)	35.67	4.51	13%	19.57	55%	14.51	74%	12.44
$P_{\rm surv}\sigma$	9.99	1.26		5.48		4.06		3.48
Total BG	13.7	1.73		7.88		6.04		4.86
S/B	11.7%	22.5%		14.7%		17.7%		16.2%
S/\sqrt{B}	4.38 σ	3 σ		4.1 <i>σ</i>		4.35 σ		3.5 σ

Table: Summary Table for Tagging soft muon Channels

Production Rate of Gaugino pairs from WBF

Summary

(日) (同) (日) (日)

Searching Channels

- DY Gaugino pairs with ISR: *large QCD background for most region*
- Gauginos decay from gluino pair: very promising but model dependent
- Gauginos decay from squark pair (not dicuss here, decoupled squarks)
- Gaugino pairs from WBF: Hard but still possible

Conclusion

By triggering on large missing E_T plus forward/backward jets tagging, one may be able to detect nearly degenerate gauginos scenario. (cannot distinguish from Invisible Higgs from WBF) Adding Soft muons will help the search.

