SFitter: From LHC Data back to the MSSM Lagrangian

Michael Rauch

University of Edinburgh

Scottish Universities Physics Alliance

Outline

- Determining SUSY parameters
- Parameter Scans
- Weighted Markov Chains
- mSUGRA as a toy model

Determining SUSY parameters

nowadays:

Parameters in the Lagrangian

 $M_{\{1,2,3\}}, \mu, \tan(\beta), m_0, \ldots m_{h^0}, \Delta m_{\tilde{g}\chi_1^0}, \mathsf{BR}, \ldots$

Feynman diagrams, RG evolution, ...

Observables:

- Masses
- Cross sections
- Branching ratios
- **9** ...

after SUSY discovery:

Observables

 $m_{h^0}, \Delta m_{\tilde{g}\chi_1^0}, \mathsf{BR}, \dots$ $\widehat{\ }$ Lagrangian parameters

Lagrangian parameters

On loop-level observables depend on every parameter

Simple inversion of the relations not possible

 \Rightarrow Parameter scans

Error estimates on parameters in the minimum

MSSM parameter space is high-dimensional:

- SM: 3+ parameters (m_t , α_s , α , ...)
- mSUGRA: 5 parameters $(m_0, m_{\frac{1}{2}}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
- General MSSM: 105 parameters

MSSM parameter space is high-dimensional:

- SM: 3+ parameters (m_t , α_s , α , ...)
- mSUGRA: 5 parameters $(m_0, m_{\frac{1}{2}}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
- General MSSM: 105 parameters

Parameter Scans

- Gradient search (Minuit)
 - Reasonably fast
 - Limited convergence radius
 - Can only find best fit

Parameter Scans

- Gradient search (Minuit)
- Grid scan
 - Can scan complete parameter space
 - For high dimensions many points needed ((points per dimension)^{dimension})

Parameter Scans

- Gradient search (Minuit)
- Grid scan
- Simulated Annealing (→ Fittino)
- Markov Chains

Markov Chains

Markov Chain (MC):

- Sequence of points, chosen by an algorithm (Metropolis-Hastings), only depending on its direct predecessor
- Picks a set of "average" points according to a potential V (e.g. inverse log-likelihood, $1/\chi^2$)
- Point density resembles the value of V
 (i.e. more points in region with high V)
- Scans high dimensional parameter spaces efficiently

[Baltz, Gondolo 2004]

mSUGRA MC scans with current exp. limits
 [Allanach, Lester, Weber 2005/6; Roszkowski, Ruiz de Austra, Trotta 2006]

Improvements

Improved evaluation algorithm for binning:

[Plehn, MR]

- \checkmark Weight points with value of V
- Take care of
 - Overcounting because point density is already weighted $\left(\frac{\text{number of points}}{\sum_{\text{points}} 1/V(\text{point})}\right)$ [based on Ferrenberg, Swendsen 1988]
 - Correct account for regions with zero probability (maintain additional chain which stores points rejected because V(point) = 0)

Maximum finder:

- Finds best match in N-D parameter space
- Refinement of MC match by additional gradient search
- Tries to find second-, third-, ...-best distinct match

mSUGRA with LHC measurements (SPS1a kinematic edges):

[Lafaye, Plehn, MR, D Zerwas]

- P(m|d) (read: probability of the model m given the data d)
- Bayes' theorem: P(m|d) = P(d|m)P(m)/P(d)
- log-likelihood: $P(d|m) \propto |\mathcal{M}|^2$
- Theorists' prejudice: P(m) (P(d) removed via normalization)

mSUGRA with LHC measurements (SPS1a kinematic edges):

[Lafaye, Plehn, MR, D Zerwas]

- P(m|d) (read: probability of the model m given the data d)
- Bayes' theorem: P(m|d) = P(d|m)P(m)/P(d)
- log-likelihood: $P(d|m) \propto |\mathcal{M}|^2$
- Theorists' prejudice: P(m) (P(d) removed via normalization)

mSUGRA with LHC measurements (SPS1a kinematic edges):

[Lafaye, Plehn, MR, D Zerwas]

- P(m|d) (read: probability of the model m given the data d)
- Bayes' theorem: P(m|d) = P(d|m)P(m)/P(d)
- log-likelihood: $P(d|m) \propto |\mathcal{M}|^2$
- Theorists' prejudice: P(m) (P(d) removed via normalization)

mSUGRA with LHC measurements (SPS1a kinematic edges):

Free parameters: $m_0, m_{1/2}, \tan(\beta), A_0, \operatorname{sgn}(\mu), m_t$ SFitter output 1: Probability Map \longrightarrow

SFitter output 2: ranked list of minima:

	χ^2	m_0	$m_{1/2}$	an(eta)	A_0	μ	m_t
1)	$3 \cdot 10^{-4}$	100.0	250.0	10.0	-99.9	+	171.4
2)	27.42	99.7	251.6	11.7	848.9	+	181.6
3)	54.12	107.2	243.4	13.3	-97.4	_	171.1
4)	70.99	108.5	246.9	13.9	26.4		173.6
5)	88.53	107.7	245.9	12.9	802.7	_	182.7

Ranked list of minima:							
	χ^2	m_0	$m_{1/2}$	an(eta)	A_0	μ	m_t
1)	$3 \cdot 10^{-4}$	100.0	250.0	10.0	-99.9	+	171.4
2)	27.42	99.7	251.6	11.7	848.9	+	181.6
3)	54.12	107.2	243.4	13.3	-97.4		171.1
4)	70.99	108.5	246.9	13.9	26.4	_	173.6
5)	88.53	107.7	245.9	12.9	802.7		182.7

Errors on the best-fit result:

	m_0	$m_{1/2}$	an(eta)	A_0
Δ LHC(masses)	3.9	1.7	1.1	33
Δ LHC(edges)	1.2	1.0	0.9	20
Δ SLHC(edges)	0.7	0.6	0.7	10
Δ ILC	0.09	0.13	0.12	4.8

Secondary Solutions:

small χ^2 , but often strange characteristics:

- atypical errors (thin bands)
- atypical correlation matrix
- only one measurement contributes significantly to χ^2

\Rightarrow Can reconstruct mSUGRA points at the LHC

Summary & Outlook

- Parameter scans important to determine Lagrangian parameters from observables
- Problem of high-dimensional parameter spaces
- Markov Chains can do this effectively
- Improved algorithm developed
- Tested with mSUGRA SPS1a: can reconstruct SPS1a from (simulated) LHC data
- Repeat procedure with more general MSSM (20+ parameters)
- SFitter (despite its name) not tied to SUSY
 → extend to other models/problems

Backup Slides

Metropolis-Hastings Algorithm

mSUGRA around Minima

mSUGRA Minima

mSUGRA: Correct solution vs. negative μ solution

Experimental results smeared by random number distributed as Gaussian around central value

Experimental Input (edges)

(Obs)	$=$ (meas) \pm ((exp) \pm ((theo)	
m_{h^0}	$= 109.53 \pm$	$0.25~\pm$	2.0	
m_t	$= 171.4 \pm$	$1.0~\pm$	0.0	
$\Delta m_{ ilde{\mu}_L,\chi_1^0}$	$= 106.26 \pm$	$1.6~\pm$	0.1	
$\Delta m_{ ilde{g},\chi_1^0}$	$= 509.96 \pm$	$2.3~\pm$	6.0	
$\Delta m_{\tilde{c}_R,\chi_1^0}$	$= 450.52 \pm$	10.0 \pm	4.2	
$\Delta m_{ ilde{g}, ilde{b}_1}$	$= 98.971 \pm$	$1.5~\pm$	1.0	
$\Delta m_{ ilde{g}, ilde{b}_2}$	$= 64.016 \pm$	$2.5~\pm$	0.7	
$Edge(\chi^0_2,\! ilde{\mu}_R,\!\chi^0_1)$	$= 79.757 \pm$	$0.03 \pm$	0.08	(m_{ll}^{\max})
Edge($ ilde{c}_L$, χ^0_2 , χ^0_1)	$= 446.44 \pm$	$1.4~\pm$	4.3	(m_{llq}^{\max})
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R$)	$= 316.51 \pm$	$0.9 \pm$	3.0	$(m_{lq}^{ m low})$
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	$= 392.8 \pm$	$1.0~\pm$	3.8	$(m_{lq}^{ m high})$
$Edge(\chi_4^0,\! ilde{\mu}_R,\!\chi_1^0)$	$= 257.41 \pm$	$2.3~\pm$	0.3	$(m_{ll}^{ m max}(\chi_4^0))$
$Edge(\chi_4^0, ilde{ au}_L, \chi_1^0)$	$= 82.993 \pm$	$5.0 \pm$	0.8	$(m_{ au au}^{ m max})$
Threshold($ ilde{c}_L$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1	$) = 211.95 \pm$	$1.6~\pm$	2.0	(m_{llq}^{\min})
Threshold($ ilde{b}_1$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1)	$= 211.95 \pm$	$1.6 \pm$	2.0	(m_{llb}^{\min})

Example

Test function (5-dim):

- **Small Hypersphere** $r = 100, V_{\text{max}} = 75 @ (650, 250, 350, 350, 350)$
- **Cuboid** $d = (173, 120, 200, 200, 200), V_{max} = 60 @ (850, 225, 650, 650, 650)$
- **Cube** $d = (100, 100, 300, 300, 300), V_{max} = 25 @ (750, 750, 450, 450, 450)$
- **Gaussian** $\sigma = (50, 150, 150, 150, 150), V_{max} = 16 @ (250, 250, 550, 550)$
- **Big Hypersphere** r = 300, $V_{max} = 12$ **@** (350, 650, 650, 650, 650)
- **Background** $V = 0.1 + 4 \cdot 10^{-30} \cdot x_1^2 x_2^2 x_3^2 x_4^2 x_5^2$

	1.	V=74.929@(655.00,253.72,347.83,348.57,349.59)
).9).8	2.	V=59.972@(850.04,224.99,650.00,649.99,654.56)
).7).6).5	3.	V=58.219@(849.97,225.01,587.08,650.01,650.02)
).4).3).2	4.	V=25.110@(750.00,749.99,450.00,450.01,450.01)
J. 1	5.	V=16.042@(245.45,253.44,552.51,542.58,544.75)
	6.	V=12.116@(350.70,650.40,650.36,650.40,650.38)
	7.	•••

Plot Details

- Parameters: $x_1, \ldots, x_5 \in [0, 1000]$
- Bins: 50×50
- PDF: Breit-Wigner $(\frac{1}{1+\Delta x_i^2/\sigma^2})$ with $\sigma = 100$
- Number of Markov chains: 9
- Number of points per chain: 10^7
- Number of function evaluations: 33, 797, 153
- Acceptance ratio: 0.19
- Final r (measure of convergence): 1.815
- CPU time (3 GHz): 150 min