Natural Realization of Seesaw in Mini-Warped Minimal SO(10)

Hai-Bo Yu

University of Maryland-College Park

with R.N. Mohapatra and N. Okada arXiv:0704.3258

May 7, 2007

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

Introduction Minimal SO(10) Model Problems of the minimal SO(10) model Mini-Warped Minimal SO(10) model Conclusions

- 2 Minimal SO(10) Model
- 3 Problems of the minimal SO(10) model
- 4 Mini-Warped Minimal SO(10) model

5 Conclusions

・ロン ・四 と ・ ヨ と ・ ヨ と

Neutrino Mass and Mixing

- Experiments tell us neutrinos are massive and there is mixing in the leptonic sector.
- In SM, neutrinos are massless.But we can write down $\frac{1}{2} \frac{(LH)^2}{\Lambda}$,If the light neutrino mass scale is $\sim 0.1 \text{ eV}$, $\Lambda \sim 10^{14} \text{ GeV}$.
- Seesaw mechanism is used to explain the smallness of masses of light neutrinos by introducing heavy right-handed neutrinos or SU(2) triplet.

SO(10) gauge group as candidate of grand unification models

- The **16** dimensional spinor representation includes right handed neutrino that is an essential part of the seesaw mechanism.
- The seesaw scale which is close to the GUT scale receives natural explanation as the GUT symmetry breaking scale. $U(1)_{B-L}$ is gauged as subgroup of SO(10).

- Minimal SO(10) model includes matter field 16 for each generation, Higgs fields 126, 126, 10 and 210.
- Renormalizable operators $16\cdot 16\cdot 10$ and $16\cdot 16\cdot \overline{126}$ generate fermions masses.
- **210** is needed to break SO(10) to SM group.

・ロト ・回ト ・ヨト ・ヨト

Decompositions of SO(10) multiplets under $SU(5) \times U(1)_X$

$$16 \hspace{.1in} = \hspace{.1in} 1_{-5} \oplus \overline{5}_{+3} \oplus 10_{-1}$$

- $\mathbf{210} \hspace{.1in} = \hspace{.1in} \mathbf{1}_0 \oplus \mathbf{5}_{-8} \oplus \overline{\mathbf{5}}_8 \oplus \mathbf{10}_4 \oplus \overline{\mathbf{10}}_{-4} \oplus \mathbf{24}_0 \oplus \mathbf{75}_0 \oplus \mathbf{40}_{-4} \oplus \overline{\mathbf{40}}_4$
- $126 \hspace{.1in} = \hspace{.1in} 1_{-10} \oplus \overline{5}_{-2} \oplus 10_{-6} \oplus \overline{15}_{+6} \oplus 45_{+2} \oplus \overline{50}_{-2}$
 - $10 \hspace{.1in} = \hspace{.1in} 5_2 \oplus \overline{5}_{-2}$

・ロン ・回 と ・ ヨン ・ ヨン

Why minimal SO(10)?

- The U(1)_{B-L} breaking VEV carries B L = 2, so R-parity is conserved.
- The model is very predictive. There are only 13 parameters.
- Large atmospherical mixing angle and small reactor angle are naturally explained by $b \tau$ unification if type II seesaw dominates the contribution to the light neutrino mass.

 $\begin{array}{c} \text{Outline}\\ \text{Introduction}\\ \text{Minimal SO(10) Model}\\ \text{Problems of the minimal SO(10) model}\\ \text{Mini-Warped Minimal SO(10) model}\\ \text{Conclusions}\\ \end{array}$

Fermions mass sum rule and neutrino mass in minimal SO(10) model

The general neutrino mass formulae $M_{\nu} = fv_L - M_D^T (fv_R)^{-1} M_D$

$$M_{u} = h\kappa_{u} + fv_{u}, M_{d} = h\kappa_{d} + fv_{d}$$
$$M_{\ell} = h\kappa_{d} - 3fv_{d}, M_{D} = h\kappa_{u} - 3fv_{u}$$

The type II contribution:
$$M_{\nu} \sim (M_d - M_l)$$
.
 $M_d \sim m_b \begin{bmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{bmatrix}$, and $M_l \sim M_d$ for $m_b \simeq m_{\tau}$,
 $M_{\nu} \simeq m_0 \begin{bmatrix} \lambda^4 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^2 & \lambda^2 \\ \lambda^3 & \lambda^2 & \lambda^2 \end{bmatrix}$

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

- Gauge couplings blow up beyond GUT scale due to large representations.
- To explain discrepancy between seesaw scale and GUT scale, one needs to fine-tune the parameters.
- In the minimal SO(10) model, type II seesaw can not dominate contribution to the light neutrino mass.

・ロン ・回 と ・ ヨ と ・ ヨ と …

The type II contribution can be written as

$$M_{
u} \sim f rac{v_{wk}^2}{M_T}$$

where M_T is SU(2) triplet mass.

- If $f \sim 1$, we need $M_T \sim 10^{14} {
 m GeV}$.
- $\overline{\mathbf{126}} = \mathbf{1}_{+10} \oplus \mathbf{5}_{+2} \oplus \mathbf{10}_{+6} \oplus \mathbf{15}_{-6} \oplus \mathbf{45}_{-2} \oplus \mathbf{50}_{+2}$. This triplet belongs to **15**, whose mass has the same order as masses of **45** and **50**.
- This model is so constraint that there is no way to achieve type-II dominance even by tuning the parameters.

Motivation

- Mini-Warping provides the solution to the mini hierarchy between M_P and M_{GUT} . $M_{GUT} = e^{-k\pi r_c} M_P$ is the cutoff of 4D theory. (Fukuyama, Kikuchi and Okada PRD 2007)
- Overlapping of of bulk fields configuration provides a way to understand mini-fine tuning needed in 4D minimal SO(10).
 Particularly it may be helpful for the realization of type II dominance or mixed case.

Warped extra dimension

As in the RS model, we use the warped metric,

$$ds^2 = e^{-2kr_c|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - r_c^2dy^2 ,$$

with $-\pi \le y \le \pi$ and $\eta_{\mu\nu} = (+, -, -, -)$. In the above expression, k is the AdS curvature, and r_c and y are the radius and the angle of S^1 , respectively.

SUSY in 5D

$$\mathcal{L} = \int dy \left\{ \int d^4 \theta r_c e^{-2kr_c|y|} \left(H_i^{\dagger} e^{-Q_i V} H_i + H_i^c e^{Q_i V} H_i^{c\dagger} \right) \right. \\ \left. + \int d^2 \theta e^{-3kr_c|y|} H_i^c \left[\partial_y - (1+C_i) kr_c \epsilon(y) - Q_i \frac{\chi}{\sqrt{2}} \right] H_i + h.c. \right\}$$

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

(日) (四) (臣) (臣) (臣)

Zero mode

The zero mode wave function of H_i satisfies the following equation of motion:

$$\left[\partial_{y}-\left(1+C_{i}+Q_{i}lpha
ight)kr_{c}\epsilon(y)
ight]H_{i}=0$$

which yields $H_i = \frac{1}{\sqrt{N_i}} e^{(1+C_i+Q_i\alpha)kr_c|y|} h_i(x^{\mu})$, where $h_i(x^{\mu})$ is the chiral multiplet in four dimensions. Here, N_i is a normalization constant, $\frac{1}{N_i} = \frac{2(C_i+Q_i\alpha)k}{e^{2(C_i+Q_i\alpha)kr_c\pi}-1}$.

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

Setup of mini-warped minimal SO(10)

- Put matter fields and Higgs fields in the bulk. Write superpotential on both UV brane and IR brane. All of the coupling constants are O(1).
- Bulk adjoint field gets VEV, and breaks SO(10) to $SU(5) \times U(1)_X$. SU(5) submultiplets within one SO(10) multiplet get different effective 5D mass parameters due to different $U(1)_X$ charge.
- Choose 5D mass parameters for SO(10) multiplets C_i and bulk adjoint field VEV parameter α.

(ロ) (同) (E) (E) (E)

Example

We take $\alpha = -1/4$ and C_i as follows

H_i components	Ci
16	1/2
10	1/2
126	1
126	0
210	-2

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

・ロン ・回 と ・ ヨ と ・ ヨ と

Masses of submultiplets of $\overline{126}$

$$\overline{\mathbf{126}} = \mathbf{1}_{+10} \oplus \mathbf{5}_{+2} \oplus \mathbf{10}_{+6} \oplus \mathbf{15}_{-6} \oplus \mathbf{45}_{-2} \oplus \mathbf{50}_{+2}$$

$$\begin{split} \mathbf{15} &\sim \omega^{3/2} M_{GUT} \sim 10^{13} \mathrm{GeV} \\ \mathbf{45} &\sim \omega^{1/2} M_{GUT} \sim 10^{15} \mathrm{GeV} \\ \mathbf{50} &\sim M_{GUT} \sim 10^{16} \mathrm{~GeV} \end{split}$$

Hai-Bo Yu University of Maryland-College Park with R.N. Mc Natural Realization of Seesaw in Mini-Warped Minimal SO(10

・ロト ・回ト ・ヨト ・ヨト

크

Type II seesaw contribution is estimated as

$$M_{\nu}^{\prime\prime} \simeq rac{2(f_1)_{33}\omega^{1/2}v_{10}v_{210}\alpha_2}{M_{GUT}\omega^{3/2}},$$

where $\omega = M_P/M_{GUT} \sim 10^{-2}$. If we take $(f_1)_{33} \sim 1$, $\alpha_2 \sim 0.5$ and assume $v_{10} \simeq v_{210} \sim 100$ GeV, we get the reasonable value for the atmospheric neutrino oscillation data, $M_{\nu}^{II} \simeq 0.05$ eV.

The type I seesaw contribution

$$M_{\nu}^{I} = M_{D}^{T} M_{R}^{-1} M_{D} \simeq rac{m_{t}^{2} \omega^{1/2}}{2(f_{1})_{33} M_{GUT} \omega^{3/2}},$$

 $m_t \sim 100 \text{ GeV}$ at the GUT scale, the type I seesaw gives the contribution to the "heaviest" light neutrino mass as $m_3 \simeq 0.025$ eV.

- Minimal SO(10) provides way to understand neutrino mass and mixing.
- There are some problems in the minimal SO(10) models.
- Embedding 4D minimal SO(10) into mini-warped 5D space provides a way to solve these problems.

・ロト ・四ト ・ヨト ・ヨト