Higgs Boson at the Fermilab Tevatron in Extended Supersymmetric Models

Sören Wiesenfeldt

Tim Stelzer, SW, Scott Willenbrock, Phys. Rev. D 75, 071101 (2007)

Pheno Symposium 2007 Higgs Boson at the Fermilab Tevatron in Extended Supersymmetric Models Sören Wiesenfeldt

Motivation

The Higgs boson has successfully resisted discovery as yet.

Precision electroweak data, in combination with the direct top-quark mass measurement at the Tevatron, hint at the existence of a light scalar particle—

but LEP has put a lower bound on the Higgs mass within the standard model (SM),

 $M_h > 114.4 \; {\rm GeV}$.

This bound has left some doubt as to whether the minimal supersymmetric standard model (MSSM) is viable.

Higgs mass in the MSSM

In the MSSM, $M_h \sim M_Z$ (at tree level: $M_h < M_Z |\cos \beta|$);

if the sparticle masses do not exceed 1 TeV, there is an upper bound, $M_h \lesssim 135$ GeV.

In addition, there is a relation between the *Z* mass, the supersymmetry breaking soft masses m_u and m_d , and μ ,

$$\frac{1}{2} M_Z^2 = \frac{m_u^2 \tan^2 \beta - m_d^2}{1 - \tan^2 \beta} - |\mu|^2$$

- μ is the only dimensionful MSSM parameter and completely unrelated to the electroweak and supersymmetry breaking scales; in fact, the most natural value would be the Planck scale! ('μ-problem')
- The MSSM has a fine-tuning problem unless the Higgs boson is somewhat lighter than the current bound. ('little hierarchy problem')
- → Interest in extensions of the MSSM, where the μ -term arises after an additional singlet field, which does not interact with the MSSM matter and gauge fields, acquires a vev. [NMSSM, MNSSM, mNSSM, UMSSM, ...]

Extended Supersymmetric Models

Replace $\mu H_u H_d$ with $h_S S H_u H_d$.

The vevs of the Higgs doublets and the singlet are generically of the same order.

The singlet field provides an additional scalar, a pseudoscalar, and an accompanying Higgsino. These mix with the neutral fields from the two doublets, yielding five neutral Higgs bosons: three scalars and two pseudoscalars.

In general, their masses are expected to be comparable; on the other hand, these extended models possess approximate U(1) symmetries, protecting the mass of one pseudoscalar, a.

A light pseudoscalar is natural, allowing the decay $h \rightarrow aa$ (where *h* is approximately SM-like) with a branching ratio of nearly unity.

> [Gunion, Haber, Moroi 1996; Dobrescu, Landsberg, Matchev 2001; Ellwanger, Gunion, Hugonie 2001, ...; Dermisek, Gunion 2005, ... Chang, Fox, Weiner 2006; Graham, Pierce, Wacker 2006; ...]

The pseudoscalars then decay to fermion pairs, resulting in a four-fermion final state, to which the LEP searches are less sensitive.

Hence, these models can evade the lower bound on the Higgs mass.

Detection of h **at the Tevatron**

If the mass of a is above the $b\overline{b}$ threshold, the dominant final state is $b\overline{b}b\overline{b}$.

Rather than to restrict ourselves to one particular model beyond the MSSM, consider the general case, where M_h varies between 110 and 150 GeV.

Higgs production at the Tevatron

In this mass region, the SM Higgs production cross section at the Tevatron is less than 1 pb, via $gg \rightarrow h$. In the MSSM the cross section is much larger for large $\tan \beta$, with both $gg \rightarrow h$ and $b\bar{b} \rightarrow h$ contributing.

[Hahn, Heinemeyer, Maltoni, Weiglein, Willenbrock 2006]

In the MSSM, however, there do not exist regions of parameter space with both enhanced Higgs production and significant branching ratio for $h \rightarrow aa \rightarrow b\overline{b}b\overline{b}$.

Background

Use MadEvent to calculate the background [Maltoni and Stelzer 2003]. The dominant background is due to QCD multijet production, with varying combinations of true *b* tags and mistagged jets.

Cuts	
rapidity	$ \eta < 2.0$
separation	$\Delta R > 0.4$
jet 1	$p_T > 20 \; \mathrm{GeV}$
jets 2–4	$p_T > 15 \; \mathrm{GeV}$
invariant mass of two jets	$m_{jj} > 10~{\rm GeV}$
Tagging efficiencies	
b tag	50%
mistag of c	10%
mistag of light quark or gluon	1%

in analogy to CDF and D0 searches for neutral Higgs bosons produced in association with bottom quarks, followed by $h \rightarrow b\bar{b}$.

Consider windows in the (M_h, M_a) plane with size 30×30 GeV for the invariant $b\bar{b}$ and $b\bar{b}b\bar{b}$ masses: The different processes sum to an enormous background of 380 nb prior to *b* tagging.

	total	$n_c = 0$	$n_c = 1$	$n_c = 2$	$n_c = 3$	$n_c = 4$
total	63	54	4	5	0.2	0.1
$n_b = 0$	3	0.8	0.2	1	0.2	0.1
$n_b = 1$	1	0.5	0.05	0.5	0	
$n_b = 2$	40	33	4	3		
$n_b = 3$	10	10	0.1		-	
$n_b = 4$	9	9				

	$M_a = 20 \; \mathrm{GeV}$	$M_a = 40 \; \mathrm{GeV}$	$M_a = 60 \; \mathrm{GeV}$
$M_h = 110 \; \mathrm{GeV}$	15 pb	14 pb	12 pb
$M_h = 130 \; \mathrm{GeV}$	15 pb	15 pb	13 pb
$M_h = 150 \; \mathrm{GeV}$	11 pb	11 pb	11 pb

Pheno Symposium 2007 Higgs Boson at the Fermilab Tevatron in Extended Supersymmetric Models Sören Wiesenfeldt

Signal

Derive the minimum signal cross section for a discovery of h with 2 fb⁻¹ of integrated luminosity.

Assume that all signal events pass the mass reconstruction constraints; use an ideal branching ratio for $h \rightarrow aa \rightarrow b\overline{b}b\overline{b}$ of 100%.

	$M_a = 20 \; \mathrm{GeV}$	$M_a = 40 \; \mathrm{GeV}$	$M_a = 60 \; \mathrm{GeV}$
$M_h = 110 \text{ GeV}$	12 pb	11 pb	
$M_h = 130 \; \mathrm{GeV}$	7 pb	9 pb	3 pb
$M_h = 150 \text{ GeV}$	4 pb	5 pb	3 pb

The minimum cross section required for discovery is an order of magnitude greater than the SM Higgs production cross section, confirming the belief that the *backgrounds overwhelm the signal in this case*.

→ Do models with both enhanced Higgs production and a significant branching ratio for the above decay mode exist?

Even if the coupling $hb\overline{b} \propto m_b$ is enhanced (yielding enhanced cross sections for $gg \rightarrow h$ and $b\overline{b} \rightarrow h$), the coupling haa could be competitive.