Searching for a Hidden Sector Higgs Boson at the LHC

Yanou Cui Michigan Center for Theoretical Physics University of Michigan

(Based on work done in collaboration with Matthew Bowen and James Wells [hep-ph/0701035, JHEP 0703:036,2007])

University of Wisconsin-Madison, May 8, 2007

Introduction

- Generic Motivation for Hidden Sector <u>Hidden Sector</u>: Singlets under the SM group $SU(3)_C \times SU(2)_L \times U(1)_Y$ But may have non-trivial intrinsic gauge structure
 - Practical: GUT theories, SUSY breaking models, String-inspired models,...
 - Philosophical: Nature= Minimal models+ Phantom (Hidden) world?

 \gg Minimal models

- Experimental constraints?: None
- Can we really SEE the HIDDEN sector ('Hide and Seek'?) at the LHC?
 - Interactions from non-renormalizable terms or loop effects (suppressed):
 low production rate, low signal→ In general, Hard

 Two renormalizable interactions (unsuppressed) as 'portals' between the SM and hidden sector:

1. $U(1)_Y$, $U(1)_{hid}$ with field strengths $B_{\mu\nu}$, $C_{\mu\nu}$ Kinetic mixing: $\chi B_{\mu\nu}C^{\mu\nu} \rightarrow Z'$ physics (well studied)

2. The only superrenormalizable term (dim-2) in \mathcal{L}_{SM} : Higgs mass term $\Delta \mathcal{L} = -\mu^2 |\Phi_{SM}|^2$

 \rightarrow Higgs field open to renormalizable coupling to hidden sector —Our interest: $\eta |\Phi_{SM}|^2 |\Phi_H|^2$ (hidden sector Higgs Φ_H , $\langle \Phi_H \rangle \neq 0 \rightarrow$ mass mixing between Φ_{SM} and Φ_H)

——2. applies to more general cases than 1.: hidden sector gauge group can be U(1)/non-Abelian groups

Motivation of Our Work:

Important observation: Interesting generic connection between Higgs physics and hidden sector \implies mutual enhancement on discovery at the LHC?

Overview of our work

We propose two possible distinct signatures at the LHC:

- 1. A narrow width trans-TeV Higgs boson
- 2. Observable $H \rightarrow hh$ decay
- Are they viable?
- 1. Simulate the LHC physics
- —sufficient signal vs. background for discovery? \checkmark

2. Satisfy the known constraints from theoretical concern (unitarity, triviality, vacuum stability) and precision EW measurement? \checkmark

Model Review

A $U(1)_{hid}$ gauge symmetry is broken by the vev of $\Phi_H \cdot \Phi_H$ mixes with Φ_{SM} . $\mathcal{L}_{Higgs} = |\mathcal{D}_\mu \Phi_{SM}|^2 + |\mathcal{D}_\mu \Phi_H|^2 + m_{\Phi_{SM}}^2 |\Phi_{SM}|^2 + m_{\Phi_H}^2 |\Phi_H|^2 - \lambda |\Phi_{SM}|^4 - \rho |\Phi_H|^4 - \eta |\Phi_{SM}|^2 |\Phi_H|^2$ (1) $\frac{1}{2} \left(\left(\phi_{SM} + v + iG^0 \right) + \frac{1}{2} \left((\phi_{SM$

$$\Phi_{SM} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_{SM} + v + iG^0 \\ G^{\pm} \end{pmatrix}, \quad \Phi_H = \frac{1}{\sqrt{2}} (\phi_H + \xi + iG')$$
(2)

 $v(\simeq 246 \text{Gev})$ and ξ are vevs. 4 input parameters $\{\lambda, \rho, \eta, \xi\}$

Gauge away Goldstone fields $G{\rm s.}\,$ Rotate from gauge eigenstates ϕ_{SM},ϕ_{H} to mass eigenstates h,H

$$\phi_{SM} = \cos \omega h + \sin \omega H \tag{3}$$

$$\phi_H = -\sin\omega h + \cos\omega H \tag{4}$$

the mixing angle ω and the mass eigenvalues are given by

$$\tan \omega = \frac{\eta v \xi}{(-\lambda v^2 + \rho \xi^2) + \sqrt{(\lambda v^2 - \rho \xi^2)^2 + \eta^2 v^2 \xi^2}}$$

$$m_{h,H}^2 = (\lambda v^2 + \rho \xi^2) \pm \sqrt{(\lambda v^2 - \rho \xi^2)^2 + \eta^2 v^2 \xi^2}$$
(5)

If $m_H > 2m_h$, $H \rightarrow hh$ (a signal of interest) is allowed kinematically, with partial width

$$\Gamma(H \to hh) = \frac{|\mu|^2}{8\pi m_H} \sqrt{1 - \frac{4m_h^2}{m_H^2}}$$
(6)

 μ : the coupling in $\triangle \mathcal{L}_{mix} = \mu h^2 H$.

$$\mu = -\frac{\eta}{2} (\xi c_{\omega}^3 + v s_{\omega}^3) + (\eta - 3\lambda) v c_{\omega}^2 s_{\omega} + (\eta - 3\rho) \xi c_{\omega} s_{\omega}^2$$

$$\tag{7}$$

Summary of the parameter space

4 input parameters $\{\lambda, \rho, \eta, \xi\}$ — Recall $\xi = \langle \Phi_H \rangle$, $\mathcal{L}_{Higgs} = |\mathcal{D}_{\mu} \Phi_{SM}|^2 + |\mathcal{D}_{\mu} \Phi_H|^2 + m_{\Phi_{SM}}^2 |\Phi_{SM}|^2 + m_{\Phi_H}^2 |\Phi_H|^2 - \lambda |\Phi_{SM}|^4 - \rho |\Phi_H|^4 - \eta |\Phi_{SM}|^2 |\Phi_H|^2$ \updownarrow

4 output parameters $\{m_h^2, m_H^2, s_\omega, \mu(\text{or } \Gamma(H \to hh))\}$ (related to observables at the LHC, coordinates of the data points to be analysed)

LHC Studies

• General Philosophy:

Challenge: Mixing \Rightarrow Two non-SM Higgs h, H, both with <u>reduced</u> couplings to SM particles \Rightarrow <u>Reduced</u> production cross-section

Opportunities:

- 1. <u>Reduced</u> couplings \rightarrow <u>Reduced</u> decay rate
- \Rightarrow Narrow-width trans-TeV Higgs H(?)
- (A SM Higgs loses meaning as a particle above \sim 800 GeV)
- 2. Two heavily mixed Higgs \Rightarrow Significant signal for $H \rightarrow hh(?)$ \Rightarrow Simultaneous discovery of H and h

• Narrow Trans-TeV Higgs

Signal: qqH production followed by $H \rightarrow WW \rightarrow \ell \nu jj$ Typical background: WWjj, $t\bar{t}jj$ Simulate LHC physics:

Data point C: $\{s_{\omega}^2 = 0.1, m_h = 120 \text{ GeV}, m_H = 1.1 \text{ TeV}, \Gamma_H = 105 \text{ GeV}\}$

Use MadEvent, with CTEQ6 PDF set to generate both signal and background events \implies Fig 1 demonstrates the plausibility of discovering a trans-TeV Higgs at the LHC :

Fig 1: Differential cross-section as a function of the invariant mass of the ℓ , $\not\!\!E_T$ and two jets reconstructing to the W mass for $H \to WW \to \ell \nu jj$ (solid), WWjj (dashed), and $t\bar{t}jj$ (dotted). (For integrated luminosity=100 fb^{-1} , integral from 1.0 TeV $< M_{l\nu jj} < 1.3 \text{ TeV} \Rightarrow 12.8 \text{ signal events vs } 7.7 \text{ background events}$)

• $H \rightarrow hh$ Signal

Data point 1: $\{s_{\omega} = 0.5, m_h = 115 \text{ GeV}, m_H = 300 \text{ GeV}, BR(H \rightarrow hh) = 1/3\}$ Signal: ggH production followed by $H \rightarrow hh \rightarrow \gamma\gamma b\bar{b}$ decays Simulate LHC physics \rightarrow Fig 2. demonstrates the opportunity to discover both H and h through $H \rightarrow hh$ decay

Fig 2: Differential cross-section as a function of invariant mass of $\gamma\gamma b\overline{b}$ for $H \to hh \to \gamma\gamma\overline{b}b$ (solid) and the sum of the backgrounds (dashed) requiring one *b*-tag.

Theoretical Bounds on Higgs Masses

 Defend the validity of perturbative description of EW theory up to high scale?⇒Perturbative unitarity constraint

Partial-wave unitarity condition on tree-level amplitudes of scatterings involving $W_L, Z_L, H \Rightarrow$ Upper bound on Higgs mass

- 1. SM Higgs: $m_{\phi_{SM}}^2 \leq \frac{4\pi\sqrt{2}}{3G_F} \simeq (700 \text{ GeV})^2$
- 2. <u>Our model</u>: A trans-TeV Higgs allowed because of mixing?

TEST:

1. Derive the unitarity constraints for our model (15 inequalities)

2. Monte Carlo method: generate 10^7 points in the perturbative region of input parameter space $\lambda \subset [0, 4\pi], \rho \subset [0, 4\pi], \eta \subset [-4\pi, 4\pi], \xi \subset [0, 5 \text{ TeV}]$

Pick out the points that satisfy all the inequalities and make $m_H - m_h$ plots for certain narrow ranges of s_{ω}^2 (Fig 3)

 \Rightarrow Trans-TeV *H* allowed for small/medium mixing ($s_{\omega}^2 \lesssim 0.4$) \checkmark

Fig 3: Red: $0 < s_{\omega}^2 < 0.1$, Blue: $0.3 < s_{\omega}^2 < 0.4$, Green: $0.9 < s_{\omega}^2 < 1.0$

Triviality Bounds and Vacuum Stability Bounds

1. In SM: both are relevant to the RGE running of λ

<u>Triviality bound</u>: Landau pole of λ is above the new physics scale Λ_* Vacuum Stability Bound: λ remains > 0 until $\Lambda_*(\sim 1 \text{ TeV}?)$

In the SM, simple relation $m_h^2 = 2\lambda v^2 \Rightarrow 160 \,{
m GeV} < m_h < 750 \,{
m GeV}$

2. <u>In our model</u>: $m_{h,H}^2 = (\lambda v^2 + \rho \xi^2) \pm \sqrt{(\lambda v^2 - \rho \xi^2)^2 + \eta^2 v^2 \xi^2}$ \Rightarrow Four determinants. RGEs for λ, ρ, η are needed:

$$\frac{d}{dt}\lambda = \frac{1}{16\pi^2} \left\{ \frac{1}{2}\eta^2 + 12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 - \frac{3}{2}\lambda(3g^2 + g_1^2) + \frac{3}{16}[2g^4 + (g^2 + g_1^2)^2] \right\} (8)$$

$$\frac{d}{dt}\rho = \frac{1}{16\pi^2}(\eta^2 + 10\rho^2 + E)$$
(9)

$$\frac{d}{dt}\eta = \frac{1}{16\pi^2}\eta \left[6\lambda + 4\rho + 2\eta + 3y_t^2 - \frac{3}{4}(3g^2 + g_1^2) + E'\right]$$
(10)

 \Rightarrow Triviality and vacuum stability bounds on $m_{h,H}$ are quite model-dependent $(\lambda, \rho, \eta, ...)$ \Rightarrow The points allowed by unitarity are also allowed by these two bounds in a large region of full parameter space

Constraints from Precision EW Measurements

Philosophy: Virtual excitations of Higgs boson can contribute to physical observables (loop corrections) (e.g. m_W)

1. SM Higgs: $\leq 200 \text{ GeV}$ at 95% C.L from precision EW analysis

2. <u>Our model</u>: S - T analysis for the points of interest Point C (trans-TeV): $(s_{\omega}^2 = 0.1, m_h = 120 \text{ GeV}, m_H = 1.1 \text{ TeV}), (S,T) = (-0.01, -0.01) \checkmark$ Point 1 $(H \rightarrow hh)$: $(s_{\omega}^2 = 0.5, m_h = 115 \text{ GeV}, m_H = 300 \text{ GeV})(S,T) = (0.01, -0.03)$ —mildly out of 68% C.L allowed region (LEP result), Z' contribution $(U(1)_{hid})$ can pull (S,T) back towards the center $\Rightarrow \checkmark$

Conclusions (1st of 2 pages)

• <u>Reemphasis</u> on the Motivation of Hidden Sector

LHC: Looking for new particles and interactions beyond the SM

- States charged under the SM group $SU(3)_C \times SU(2)_L \times U(1)_Y$ -direct participants in EW physics (ubiquitous in SUSY, technicolor, extra dimensions...)
- States as singlets under the SM group-Hidden sector (E.g. S in NMSSM for generating μ term, exotic gauge structure in string-inspired models) \Rightarrow May connect to EW physics in an indirect but significant way

Summary of Our Work

- Consider a $U(1)_{hid}$ sector which is connected to Higgs physics through a renormalizable mixing term $\eta |\Phi_{SM}|^2 |\Phi_H|^2 (\langle \Phi_H \rangle \neq 0)$
- Propose two possible distinct signatures for discovery at the LHC:
 - * A narrow width trans-TeV Higgs
 - * Observable $H \rightarrow hh$ decay
- Study the viability of the proposed signatures
 - * LHC physics simulation \checkmark
 - ∗ Theoretical bounds from unitarity, triviality, vacuum stability;
 Constraints from precision EW measurements √