$B_{s}^{0}-\bar{B}_{s}^{0}$ mixing parameters with $N_{f}=2+1$ sea quarks in lattice QCD

Elvira Gámiz

In collaboration with:

Emel Dalgic(Vancouver), Alan Gray (Ohio), Christine T.H. Davies (Glasgow), G. Peter Lepage (Cornell), Junko Shigemitsu (Ohio), Howard Trottier (Vancouver) and Matthew Wingate (Cambridge)

```
HPQCD Collaboration
```

- PHENO 07, 8th May 2007 .

1. Introduction: $B_{0}-\bar{B}_{0}$ mixing parameters

$$
\begin{aligned}
\left|B_{s / d}^{0}(H)\right\rangle & =p\left|B_{s / d}^{0}\right\rangle+q\left|\bar{B}_{s / d}^{0}\right\rangle & & \Delta M_{s / d}=M_{s / d}(H)-M_{s / d}(L) \\
\left|B_{s / d}^{0}(L)\right\rangle & =p\left|B_{s / d}^{0}\right\rangle-q\left|\bar{B}_{s / d}^{0}\right\rangle & & \Delta \Gamma_{s / d}=\Gamma_{s / d}(H)-\Gamma_{s / d}(L)
\end{aligned}
$$

- experimentally: very well measured

$$
\left.\Delta M_{d}\right|_{\text {exp. }}=0.508 \pm 0.004 \text { World average }
$$

Two-sided bound on ΔM_{s} from $\mathrm{D} \varnothing$ quickly followed by a precise measurement from CDF

$$
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) p s^{-1}
$$

1. Introduction: $B_{0}-\bar{B}_{0}$ mixing parameters

$$
\begin{aligned}
\left|B_{s / d}^{0}(H)\right\rangle & =p\left|B_{s / d}^{0}\right\rangle+q\left|\bar{B}_{s / d}^{0}\right\rangle & & \Delta M_{s / d}=M_{s / d}(H)-M_{s / d}(L) \\
\left|B_{s / d}^{0}(L)\right\rangle & =p\left|B_{s / d}^{0}\right\rangle-q\left|\bar{B}_{s / d}^{0}\right\rangle & & \Delta \Gamma_{s / d}=\Gamma_{s / d}(H)-\Gamma_{s / d}(L)
\end{aligned}
$$

- experimentally: very well measured

$$
\left.\Delta M_{d}\right|_{\text {exp. }}=0.508 \pm 0.004 \text { World average }
$$

Two-sided bound on ΔM_{s} from $\mathrm{D} \varnothing$ quickly followed by a precise measurement from CDF

$$
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) p s^{-1}
$$

Unofficial world average (R.v.Kooten, FP\& CP, April 2006)

$$
\Delta \Gamma_{s}=0.097_{-0.042}^{+0.041} p s^{-1} \Longrightarrow\left(\frac{\Delta \Gamma}{\Gamma}\right)_{s} \simeq 0.15 \pm 0.06
$$

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t s}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{s}}^{2} \hat{B}_{B_{s}}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}} \underbrace{\left|V_{t s}^{*} V_{t b}\right|^{2}}_{5 \%} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{s}}^{2} \hat{B}_{B_{s}}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}} \underbrace{\left|V_{t s}^{*} V_{t b}\right|^{2}}_{5 \%} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30 \%}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}} \underbrace{\left|V_{t s}^{*} V_{t b}\right|^{2}}_{5 \%} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30 \%}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_{s}}^{2} \hat{B}_{B_{s}}$ to match experimental accuracy

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}} \underbrace{\left|V_{t s}^{*} V_{t b}\right|^{2}}_{5 \%} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30 \%}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_{s}}^{2} \hat{B}_{B_{s}}$
to match experimental accuracy
\# Non-perturbative input
$\frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}(\mu) M_{B_{s}}^{2}=\left\langle\overline{B_{s}^{0}}\right| O_{L}\left|B_{s}^{0}\right\rangle(\mu)$ with $\quad O_{L} \equiv\left[\overline{b^{i}} s^{i}\right]_{V-A}\left[\overline{b^{j}} s^{j}\right]_{V-A}$

- theoretically: In the Standard Model

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}} \underbrace{\left|V_{t s}^{*} V_{t b}\right|^{2}}_{5 \%} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30 \%}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_{s}}^{2} \hat{B}_{B_{s}}$ to match experimental accuracy
\# Non-perturbative input

$$
\frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}(\mu) M_{B_{s}}^{2}=\left\langle\overline{B_{s}^{0}}\right| O_{L}\left|B_{s}^{0}\right\rangle(\mu) \text { with } \quad O_{L} \equiv\left[\overline{b^{i}} s^{i}\right]_{V-A}\left[\left[\overline{b^{j}} s^{j}\right]_{V-A}\right.
$$

For $\Delta \Gamma_{s}$ one needs either O_{S} and O_{L}, or O_{3} and O_{L}

$$
\begin{aligned}
O_{S} & \equiv\left[\overline{b^{i}} s^{i}\right]_{S-P}\left[\overline{b^{j}} s^{j}\right]_{S-P} \\
O_{3} & \equiv\left[\overline{b^{i}} s^{j}\right]_{S-P}\left[\left[\bar{b}^{j} s^{i}\right]_{S-P}\right.
\end{aligned}
$$

2. Lattice formulations for light and heavy quarks

MILC $N_{f}^{\text {sea }}=2+1$ configurations
\# Light quarks (sea and valence): improved staggered quarks (Asqtad)

* good chiral properties
* accessible dynamical simulations

2. Lattice formulations for light and heavy quarks

MILC $N_{f}^{\text {sea }}=2+1$ configurations
\# Light quarks (sea and valence): improved staggered quarks (Asqtad)

* good chiral properties
* accessible dynamical simulations
\# (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}\left(1 / M^{2}\right) \mathcal{O}\left(a^{2}\right)$ and leading $\mathcal{O}\left(1 / M^{3}\right)$
* Simpler and faster algorithms to calculate b propagator

2. Lattice formulations for light and heavy quarks

MILC $N_{f}^{\text {sea }}=2+1$ configurations
\# Light quarks (sea and valence): improved staggered quarks (Asqtad)

* good chiral properties
* accessible dynamical simulations
\# (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}\left(1 / M^{2}\right) \mathcal{O}\left(a^{2}\right)$ and leading $\mathcal{O}\left(1 / M^{3}\right)$
* Simpler and faster algorithms to calculate b propagator
\# Improved gluon action

2. Lattice formulations for light and heavy quarks

MILC $N_{f}^{\text {sea }}=2+1$ configurations

* Light quarks (sea and valence): staggered quarks (Asqtad action)
* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}\left(1 / M^{2}\right) \mathcal{O}\left(a^{2}\right)$ and leading $\mathcal{O}\left(1 / M^{3}\right)$
* Improved gluon action

2. Lattice formulations for light and heavy quarks

```
MILC }\mp@subsup{N}{f}{\mathrm{ sea }}=2+1\mathrm{ configurations
```

* Light quarks (sea and valence): staggered quarks (Asqtad action)
* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}\left(1 / M^{2}\right) \mathcal{O}\left(a^{2}\right)$ and leading $\mathcal{O}\left(1 / M^{3}\right)$
* Improved gluon action

As in previous HPQCD studies of B leptonic and semileptonic decays, all action parameters fixed via light and heavy-heavy simulations prior embarking on B physics

2. Lattice formulations for light and heavy quarks

```
MILC }\mp@subsup{N}{f}{\mathrm{ sea }}=2+1\mathrm{ configurations
```

* Light quarks (sea and valence): staggered quarks (Asqtad action)
* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}\left(1 / M^{2}\right) \mathcal{O}\left(a^{2}\right)$ and leading $\mathcal{O}\left(1 / M^{3}\right)$
* Improved gluon action

As in previous HPQCD studies of B leptonic and semileptonic decays, all action parameters fixed via light and heavy-heavy simulations prior embarking on B physics

$$
\begin{aligned}
\Upsilon \quad 2 S-1 S \text { splitting } & \rightarrow a^{-1} \\
\Upsilon & \rightarrow m_{b} \\
\text { Kaon } & \rightarrow m_{s}
\end{aligned}
$$

3. Relevant four fermion operators

\[

\]

with i, j colour indices and $a M_{0}$ the bare b mass in lattice units.

* Dimension 7 operators $O_{X}^{M 1}$ required at $\mathcal{O}\left(\Lambda_{Q C D} / M\right)$

3. Relevant four fermion operators

$$
\text { (for } \Delta M_{s} \text { and } \Delta \Gamma_{s} \text {) }
$$

$$
\begin{aligned}
O_{L} & \equiv\left[\overline{b^{i}} s^{i}\right]_{V-A}\left[\overline{b^{j}} s^{j}\right]_{V-A} \\
O_{S} & \equiv\left[\overline{b^{i}} s^{i}\right]_{S-P}\left[\overline{b^{j}} s^{j}\right]_{S-P} \\
O_{3} & \equiv\left[\overline{b^{i}} s^{j}\right]_{S-P}\left[\overline{b^{j}} s^{i}\right]_{S-P} \\
O_{L}^{M 1} & \equiv \frac{1}{2 a M_{0}}\left\{\left[\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} s^{i}\right]_{V-A}\left[\overline{b^{j}} s^{j}\right]_{V-A}+\left[\overline{b^{i}} s^{i}\right]_{V-A}\left[\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} s^{j}\right]_{V-A}\right\} \\
O_{S}^{M 1} & \equiv \frac{1}{2 a M_{0}}\left\{\left[\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} s^{i}\right]_{S-P}\left[\overline{b^{j}} s^{j}\right]_{S-P}+\left[\overline{b^{i}} s^{i}\right]_{S-P}\left[\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} s^{j}\right]_{S-P}\right\} \\
O_{3}^{M 1} & \equiv \frac{1}{2 a M_{0}}\left\{\left[\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} s^{j}\right]_{S-P}\left[\overline{b^{j}} s^{i}\right]_{S-P}+\left[\overline{b^{i}} s^{j}\right]_{S-P}\left[\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} s^{i}\right]_{S-P}\right\}
\end{aligned}
$$

with i, j colour indices and $a M_{0}$ the bare b mass in lattice units.

* Dimension 7 operators $O_{X}^{M 1}$ required at $\mathcal{O}\left(\Lambda_{Q C D} / M\right)$
* O_{3} and O_{L} lead to smaller theoretical uncertainties in the calculation of $\Delta \Gamma_{s}$ than O_{S} and O_{L} (Lenz \& Nierste):

$$
\left\langle O_{3}\right\rangle=-\left\langle O_{S}\right\rangle-1 / 2\left\langle O_{L}\right\rangle+\mathcal{O}(1 / M)
$$

4. One-loop matching

The input for the SM prediction for ΔM_{s} is

$$
\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu) \equiv \frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}^{\overline{M S}}(\mu) M_{B_{s}}^{2}
$$

that is related to the lattice operators through $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(\frac{\Lambda_{Q C D}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_{s}}{a M}\right)$ by
$\frac{a^{3}}{2 M_{B_{s}}}\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu)=\left[1+\alpha_{s} \cdot \rho_{L L}\right]\left\langle O_{L}\right\rangle(1 / a)+\alpha_{s} \cdot \rho_{L S}\left\langle O_{S}\right\rangle(1 / a)+$

$$
\left[\left\langle O_{L}^{M 1}\right\rangle(1 / a)-\alpha_{s}\left(\zeta_{10}^{L L}\left\langle O_{L}\right\rangle(1 / a)+\zeta_{10}^{L S}\left\langle O_{S}\right\rangle(1 / a)\right)\right]
$$

4. One-loop matching

The input for the SM prediction for ΔM_{s} is

$$
\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu) \equiv \frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}^{\overline{M S}}(\mu) M_{B_{s}}^{2}
$$

that is related to the lattice operators through $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(\frac{\Lambda_{Q C D}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_{s}}{a M}\right)$ by
$\frac{a^{3}}{2 M_{B_{s}}}\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu)=\left[1+\alpha_{s} \cdot \rho_{L L}\right]\left\langle O_{L}\right\rangle(1 / a)+\alpha_{s} \cdot \rho_{L S}\left\langle O_{S}\right\rangle(1 / a)+$

$$
\left[\left\langle O_{L}^{M 1}\right\rangle(1 / a)-\alpha_{s}\left(\zeta_{10}^{L L}\left\langle O_{L}\right\rangle(1 / a)+\zeta_{10}^{L S}\left\langle O_{S}\right\rangle(1 / a)\right)\right]
$$

* $\left\langle O_{X}\right\rangle$: operator's matrix elements in the lattice theory

4. One-loop matching

The input for the SM prediction for ΔM_{s} is

$$
\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu) \equiv \frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}^{\overline{M S}}(\mu) M_{B_{s}}^{2}
$$

that is related to the lattice operators through $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(\frac{\Lambda_{Q C D}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_{s}}{a M}\right)$ by
$\frac{a^{3}}{2 M_{B_{s}}}\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu)=\left[1+\alpha_{s} \cdot \rho_{L L}\right]\left\langle O_{L}\right\rangle(1 / a)+\alpha_{s} \cdot \rho_{L S}\left\langle O_{S}\right\rangle(1 / a)+$

$$
\left[\left\langle O_{L}^{M 1}\right\rangle(1 / a)-\alpha_{s}\left(\zeta_{10}^{L L}\left\langle O_{L}\right\rangle(1 / a)+\zeta_{10}^{L S}\left\langle O_{S}\right\rangle(1 / a)\right)\right]
$$

* $\left\langle O_{X}\right\rangle$: operator's matrix elements in the lattice theory
* The one-loop renormalization coefficients $\rho_{X Y}=\rho_{X Y}^{\overline{M S}}(\mu)-\rho_{X Y}^{l a t t .}(1 / a)$

4. One-loop matching

The input for the SM prediction for ΔM_{s} is

$$
\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu) \equiv \frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}^{\overline{M S}}(\mu) M_{B_{s}}^{2}
$$

that is related to the lattice operators through $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}\left(\frac{\Lambda_{Q C D}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_{s}}{a M}\right)$ by
$\frac{a^{3}}{2 M_{B_{s}}}$
$\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu)=\left[1+\alpha_{s} \cdot \rho_{L L}\right]\left\langle O_{L}\right\rangle(1 / a)+\alpha_{s} \cdot \rho_{L S}\left\langle O_{S}\right\rangle(1 / a)+$

$$
\left[\left\langle O_{L}^{M 11}\right\rangle(1 / a)-\alpha_{s}\left(\zeta_{10}^{L L}\left\langle O_{L}\right\rangle(1 / a)+\zeta_{10}^{L S}\left\langle O_{S}\right\rangle(1 / a)\right)\right]
$$

* $\left\langle O_{X}\right\rangle$: operator's matrix elements in the lattice theory
* The one-loop renormalization coefficients $\rho_{X Y}=\rho_{X Y}^{\overline{M S}}(\mu)-\rho_{X Y}^{\text {latt. }}(1 / a)$
* $\zeta_{10}^{X Y}$ are necessary to subtract $\mathcal{O}\left(\frac{\alpha_{s}}{a M}\right)$ power law cont. from $\left\langle O_{L}^{M 1}\right\rangle$
\Longrightarrow Similarly one can define bag parameters for the operators O_{S} and O_{3} entering in the calculation of $\Delta \Gamma_{s}$

$$
\left\langle O_{S}\right\rangle_{(\mu)}^{\overline{M S}} \equiv-\frac{5}{3} f_{B_{s}}^{2} \frac{B_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2} ; \quad\left\langle O_{3}\right\rangle_{(\mu)}^{\overline{M S}} \equiv \frac{1}{3} f_{B_{s}}^{2} \frac{\tilde{B}_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2}
$$

with $\frac{1}{R^{2}} \equiv \frac{M_{B_{s}}^{2}}{\left(\bar{m}_{b}+\bar{m}_{s}\right)^{2}}$
\Longrightarrow Similarly one can define bag parameters for the operators O_{S} and O_{3} entering in the calculation of $\Delta \Gamma_{s}$

$$
\left\langle O_{S}\right\rangle_{(\mu)}^{\overline{M S}} \equiv-\frac{5}{3} f_{B_{s}}^{2} \frac{B_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2} ; \quad\left\langle O_{3}\right\rangle_{(\mu)}^{\overline{M S}} \equiv \frac{1}{3} f_{B_{s}}^{2} \frac{\tilde{B}_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2}
$$

with $\frac{1}{R^{2}} \equiv \frac{M_{B_{s}}^{2}}{\left(\bar{m}_{b}+\bar{m}_{s}\right)^{2}}$

* Analogous matching relations
* Renormalization of these operators at one-loop does not involve new lattice operators

5. Numerical simulations

We calculate both 3-point (for any $\hat{Q}=Q_{X}, Q_{X}^{1 j}$) and 2-point correlators

$$
\begin{gathered}
C^{(4 f)}\left(t_{1}, t_{2}\right)=\sum_{\vec{x}_{1}, \vec{x}_{2}}\langle 0| \Phi_{\bar{B}_{s}}\left(\vec{x}_{1}, t_{1}\right)[\hat{Q}](0) \Phi_{\bar{B}_{s}}^{\dagger}\left(\vec{x}_{2},-t_{2}\right)|0\rangle \\
C^{(B)}(t)=\sum_{\vec{x}}\langle 0| \Phi_{\bar{B}_{s}}(\vec{x}, t) \Phi_{\bar{B}_{s}}^{\dagger}(\overrightarrow{0}, 0)|0\rangle
\end{gathered}
$$

* $\Phi_{\overline{B_{s}}}(\vec{x}, t)$ is an interpolating operator for the B_{s} meson.

5. Numerical simulations

We calculate both 3-point (for any $\hat{Q}=Q_{X}, Q_{X}^{1 j}$) and 2-point correlators

$$
\begin{gathered}
C^{(4 f)}\left(t_{1}, t_{2}\right)=\sum_{\vec{x}_{1}, \vec{x}_{2}}\langle 0| \Phi_{\bar{B}_{s}}\left(\vec{x}_{1}, t_{1}\right)[\hat{Q}](0) \Phi_{\bar{B}_{s}}^{\dagger}\left(\vec{x}_{2},-t_{2}\right)|0\rangle \\
C^{(B)}(t)=\sum_{\vec{x}}\langle 0| \Phi_{\bar{B}_{s}}(\vec{x}, t) \Phi_{\bar{B}_{s}}^{\dagger}(\overrightarrow{0}, 0)|0\rangle
\end{gathered}
$$

* $\Phi_{\overline{B_{s}}}(\vec{x}, t)$ is an interpolating operator for the B_{s} meson.
* We work with $1 \leq t_{1}, t_{2} \leq 16$.

5. Numerical simulations

We calculate both 3-point (for any $\hat{Q}=Q_{X}, Q_{X}^{1 j}$) and 2-point correlators

$$
\begin{gathered}
C^{(4 f)}\left(t_{1}, t_{2}\right)=\sum_{\vec{x}_{1}, \vec{x}_{2}}\langle 0| \Phi_{\bar{B}_{s}}\left(\vec{x}_{1}, t_{1}\right)[\hat{Q}](0) \Phi_{\bar{B}_{s}}^{\dagger}\left(\vec{x}_{2},-t_{2}\right)|0\rangle \\
C^{(B)}(t)=\sum_{\vec{x}}\langle 0| \Phi_{\bar{B}_{s}}(\vec{x}, t) \Phi_{\bar{B}_{s}}^{\dagger}(\overrightarrow{0}, 0)|0\rangle
\end{gathered}
$$

* $\Phi_{\overline{B_{s}}}(\vec{x}, t)$ is an interpolating operator for the B_{s} meson.
* We work with $1 \leq t_{1}, t_{2} \leq 16$.
* No smearing (minimize overlap with radial excitations).

5. Numerical simulations

We calculate both 3-point (for any $\hat{Q}=Q_{X}, Q_{X}^{1 j}$) and 2-point correlators

$$
\begin{gathered}
C^{(4 f)}\left(t_{1}, t_{2}\right)=\sum_{\vec{x}_{1}, \vec{x}_{2}}\langle 0| \Phi_{\bar{B}_{s}}\left(\vec{x}_{1}, t_{1}\right)[\hat{Q}](0) \Phi_{\bar{B}_{s}}^{\dagger}\left(\vec{x}_{2},-t_{2}\right)|0\rangle \\
C^{(B)}(t)=\sum_{\vec{x}}\langle 0| \Phi_{\bar{B}_{s}}(\vec{x}, t) \Phi_{\bar{B}_{s}}^{\dagger}(\overrightarrow{0}, 0)|0\rangle
\end{gathered}
$$

* $\Phi_{\overline{B_{s}}}(\vec{x}, t)$ is an interpolating operator for the B_{s} meson.
* We work with $1 \leq t_{1}, t_{2} \leq 16$.
* No smearing (minimize overlap with radial excitations).
* Physical valence s and b quarks (fixed from Kaon and Υ masses).

5. Numerical simulations

We calculate both 3-point (for any $\hat{Q}=Q_{X}, Q_{X}^{1 j}$) and 2-point correlators

$$
\begin{gathered}
C^{(4 f)}\left(t_{1}, t_{2}\right)=\sum_{\vec{x}_{1}, \vec{x}_{2}}\langle 0| \Phi_{\bar{B}_{s}}\left(\vec{x}_{1}, t_{1}\right)[\hat{Q}](0) \Phi_{\bar{B}_{s}}^{\dagger}\left(\vec{x}_{2},-t_{2}\right)|0\rangle \\
C^{(B)}(t)=\sum_{\vec{x}}\langle 0| \Phi_{\bar{B}_{s}}(\vec{x}, t) \Phi_{\bar{B}_{s}}^{\dagger}(\overrightarrow{0}, 0)|0\rangle
\end{gathered}
$$

* $\Phi_{\overline{B_{s}}}(\vec{x}, t)$ is an interpolating operator for the B_{s} meson.
* We work with $1 \leq t_{1}, t_{2} \leq 16$.
* No smearing (minimize overlap with radial excitations).
* Physical valence s and b quarks (fixed from Kaon and Υ masses).
* Two ensembles of MILC configurations (560 and 414 conf.) with $\left(m_{u}^{\text {sea }}=m_{d}^{\text {sea }}\right) / m_{s}=0.25,0.50$ and $a^{-1}=1.6 \mathrm{GeV}$.

Fitting

We carried out bayesian simultaneous fits of the 3-point and 2-point correlators to the forms

$$
\begin{aligned}
C^{(4 f)}\left(t_{1}, t_{2}\right) & =\sum_{j, k=0}^{N_{e x p}-1} A_{j k}(-1)^{j \cdot t_{1}}(-1)^{k \cdot t_{2}} e^{-E_{B}^{(j)}\left(t_{1}-1\right)} e^{-E_{B}^{(k)}\left(t_{2}-1\right)} \\
C^{B}(t) & =\sum_{j=0}^{N_{e x p}-1} \xi_{j}(-1)^{j \cdot t} e^{-E_{B}^{(j)}(t-1)}
\end{aligned}
$$

Fitting

We carried out bayesian simultaneous fits of the 3-point and 2-point correlators to the forms

$$
\begin{aligned}
C^{(4 f)}\left(t_{1}, t_{2}\right) & =\sum_{j, k=0}^{N_{e x p}-1} A_{j k}(-1)^{j \cdot t_{1}}(-1)^{k \cdot t_{2}} e^{-E_{B}^{(j)}\left(t_{1}-1\right)} e^{-E_{B}^{(k)}\left(t_{2}-1\right)} \\
C^{B}(t) & =\sum_{j=0}^{N_{e x p}-1} \xi_{j}(-1)^{j \cdot t} e^{-E_{B}^{(j)}(t-1)}
\end{aligned}
$$

* The hadronic matrix element of any 4-fermion operator $\hat{Q}=O_{X}, O_{X}^{1 j}$ defined before is given by

$$
\langle\hat{Q}\rangle \equiv\left\langle\bar{B}_{s}\right| \hat{Q}\left|B_{s}\right\rangle=\frac{A_{00}}{\xi_{0}}
$$

Fitting

We carried out bayesian simultaneous fits of the 3-point and 2-point correlators to the forms

$$
\begin{aligned}
C^{(4 f)}\left(t_{1}, t_{2}\right) & =\sum_{j, k=0}^{N_{e x p}-1} A_{j k}(-1)^{j \cdot t_{1}}(-1)^{k \cdot t_{2}} e^{-E_{B}^{(j)}\left(t_{1}-1\right)} e^{-E_{B}^{(k)}\left(t_{2}-1\right)} \\
C^{B}(t) & =\sum_{j=0}^{N_{e x p}-1} \xi_{j}(-1)^{j \cdot t} e^{-E_{B}^{(j)}(t-1)}
\end{aligned}
$$

* The hadronic matrix element of any 4-fermion operator $\hat{Q}=O_{X}, O_{X}^{1 j}$ defined before is given by

$$
\langle\hat{Q}\rangle \equiv\left\langle\bar{B}_{s}\right| \hat{Q}\left|B_{s}\right\rangle=\frac{A_{00}}{\xi_{0}}
$$

* Fit directly to $C^{(4 f)}$ and C^{B} rather than take ratios
* Use entire range $1 \leq t_{1}, t_{2} \leq 16$
* We let $N_{\text {exp }} \leq 7-9$

6. Main results to date

	$m_{f} / m_{s}=0.25$	$m_{f} / m_{s}=0.50$
$f_{B_{s}} \sqrt{\hat{B}_{B_{s}}}[\mathrm{GeV}]$	$0.281(21)$	$0.289(22)$
$f_{B_{s}} \sqrt{B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)}[\mathrm{GeV}]$	$0.227(17)$	$0.233(17)$
$f_{B_{s}} \frac{\sqrt{B_{S}^{\overline{M S}}\left(m_{b}\right)}}{R}[\mathrm{GeV}]$	$0.295(22)$	$0.301(23)$
$f_{B_{s}} \frac{\sqrt{\tilde{B}_{S}^{M S}\left(m_{b}\right)}}{R}[\mathrm{GeV}]$	$0.305(23)$	$0.310(23)$

$$
\begin{gathered}
\left\langle O_{L}\right\rangle^{\overline{M S}}(\mu) \equiv \frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}^{\overline{M S}}(\mu) M_{B_{s}}^{2} \quad\left\langle O_{S}\right\rangle_{(\mu)}^{\overline{M S}} \equiv-\frac{5}{3} f_{B_{s}}^{2} \frac{B_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2} \\
\left\langle O_{3}\right\rangle_{(\mu)}^{\overline{M S}} \equiv \frac{1}{3} f_{B_{s}}^{2} \frac{\tilde{B}_{S}^{\overline{M S}}(\mu)}{R^{2}} M_{B_{s}}^{2}
\end{gathered}
$$

6. Main results to date

	$m_{f} / m_{s}=0.25$	$m_{f} / m_{s}=0.50$
$f_{B_{s}} \sqrt{B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)}[\mathrm{GeV}]$	$0.227(17)$	$0.233(17)$

Main Errors in $f_{B_{s}}^{2} B_{B_{s}}\left(m_{b}\right)$

Statistical + Fitting	9%
Higher Order Matching	9%
Discretization	4%
Relativistic	3%
Scale $\left(a^{-3}\right)$	5%
Total	15%

6. Main results to date

	$m_{f} / m_{s}=0.25$	$m_{f} / m_{s}=0.50$
$f_{B_{s}} \sqrt{B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)}[\mathrm{GeV}]$	$0.227(17)$	$0.233(17)$

Main Errors in $f_{B_{s}}^{2} B_{B_{s}}\left(m_{b}\right)$

Statistical + Fitting	9%
Higher Order Matching	9%
Discretization	4%
Relativistic	3%
Scale $\left(a^{-3}\right)$	5%
Total	15%

\# Light sea quark mass dependence smaller than current errors ($1 \%-3 \%$)
\rightarrow use the $m_{f} / m_{s}=0.25$ results in the following comparison with experimental data.

Comparison with experiment: ΔM_{s}

\# CDF measurement:

$$
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) p s^{-1}
$$

Comparison with experiment: ΔM_{s}

\# CDF measurement:

$$
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) p s^{-1}
$$

\# Standard Model prediction

$$
\left.\Delta M_{s}\right|_{\text {theor. }}=20.3 \pm 3.0 \pm 0.8 p^{-1}
$$

* first error: $f_{B_{s}}^{2} \hat{B}_{B_{s}}$
* second error: other uncert. dominated by $\left|V_{t s}^{*} V_{t b}\right|^{2}$ error estimate

Comparison with experiment: ΔM_{s}

\# CDF measurement:

$$
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) p s^{-1}
$$

\# Standard Model prediction

$$
\left.\Delta M_{s}\right|_{\text {theor } .}=20.3 \pm 3.0 \pm 0.8 p s^{-1}
$$

* first error: $f_{B_{s}}^{2} \hat{B}_{B_{s}}$
* second error: other uncert. dominated by $\left|V_{t s}^{*} V_{t b}\right|^{2}$ error estimate
\# Conversely, one can use $\left.\Delta M_{s}\right|_{\text {exp }}$. and our value of $f_{B_{s}}^{2} \hat{B}_{B_{s}}$ to get

$$
\left|V_{t s}^{*} V_{t b}\right|=(3.8 \pm 0.3 \pm 0.1) \times 10^{-2}
$$

Comparison with experiment: $\Delta \Gamma_{s}$

\# Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$
\Delta \Gamma_{s}^{e x p}=0.097_{-0.042}^{+0.041} p^{-1} \Longrightarrow\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{e x p} \simeq 0.15 \pm 0.06
$$

Comparison with experiment: $\Delta \Gamma_{s}$

\# Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$
\Delta \Gamma_{s}^{e x p}=0.097_{-0.042}^{+0.041} p s^{-1} \Longrightarrow\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{e x p} \simeq 0.15 \pm 0.06
$$

\# Use NLO formula of Lenz\& Nierste

$$
\begin{aligned}
& \left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{\text {theor. }}=\left(\frac{f_{B_{s}}}{245 \mathrm{MeV}}\right)^{2}\left[0.170 B_{B_{s}}+0.059 \tilde{B}_{S}-0.044\right] \\
\Longrightarrow \quad & \left(\frac{1}{245 \mathrm{MeV}}\right)^{2}\left[0.170\left(f_{B_{s}}^{2} B_{B_{s}}\right)+0.059 R^{2}\left(\frac{f_{B_{s}}^{2} \tilde{B}_{S}}{R^{2}}\right)-0.044 f_{B_{s}}^{2}\right]
\end{aligned}
$$

Comparison with experiment: $\Delta \Gamma_{s}$

\# Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$
\Delta \Gamma_{s}^{e x p}=0.097_{-0.042}^{+0.041} p^{-1} \Longrightarrow\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{\exp } \simeq 0.15 \pm 0.06
$$

\# Use NLO formula of Lenz\& Nierste
$\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{\text {theor. }}=\left(\frac{1}{245 \mathrm{MeV}}\right)^{2}\left[0.170\left(f_{B_{s}}^{2} B_{B_{s}}\right)+0.059 R^{2}\left(\frac{f_{B_{s}}^{2} \tilde{B}_{S}}{R^{2}}\right)-0.044 f_{B_{s}}^{2}\right]$
\# Inserting HPQCD's $f_{B_{s}}=0.260(29) \mathrm{GeV}, R^{2} \equiv \frac{\left(\bar{m}_{b}+\bar{m}_{s}\right)^{2}}{M_{B_{s}}^{2}}=0.652$ and our results for $f_{B} B_{B}^{2}$

$$
\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}^{\text {theor. }}=0.16 \pm 0.03 \pm 0.02
$$

Comparison with other (lattice) work

	$m_{f} / m_{s}=0.25$	$m_{f} / m_{s}=0.50$	JLQCD $\left(N_{f}=2\right)$
$B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)$	$0.76(11)$	$0.80(12)$	-
$B_{B_{s}}^{M S}\left(m_{b}\right)$ $($ no $1 / \mathrm{M}$ correc. $)$	$0.88(13)$	$0.92(14)$	$0.85(6)$
$\hat{B}_{B_{s}}$	$1.17(17)$	$1.23(18)$	$1.30(9)$

	$m_{f} / m_{s}=0.25$	$m_{f} / m_{s}=0.50$	Hashimoto et al. (quenched)
$\frac{B_{S}^{M S}\left(m_{b}\right)}{R_{S}^{M S}\left(m_{b}\right)}$	$1.29(19)$	$1.34(20)$	$1.24(16)$
R^{2}	$1.38(21)$	$1.42(21)$	-
		Becirevic et al. (quenched)	
$B_{S}^{M S}\left(m_{b}\right)$	$0.84(13)$	$0.87(13)$	$0.84(2)(4)$
$\tilde{B}_{S}^{M S}\left(m_{b}\right)$	$0.90(14)$	$0.93(14)$	$0.91(3)(8)$

7. Summary and future work

\# Results are presented for the first $N_{f}=2+1$ determination of the
B_{s}^{0} meson mixing parameters $f_{B_{s}}^{2} B_{B_{s}}, f_{B_{s}}^{2} \frac{B_{S}}{R^{2}}$ and $f_{B_{s}}^{2} \frac{\tilde{B}_{S}}{R^{2}}$

* MILC collaboration $N_{f}=2+1$ configurations
* NRQCD b-quarks
* Staggered (Asqtad) light quarks

7. Summary and future work

\# Results are presented for the first $N_{f}=2+1$ determination of the B_{s}^{0} meson mixing parameters $f_{B_{s}}^{2} B_{B_{s}}, f_{B_{s}}^{2} \frac{B_{S}}{R^{2}}$ and $f_{B_{s}}^{2} \frac{\tilde{B}_{S}}{R^{2}}$

* MILC collaboration $N_{f}=2+1$ configurations
* NRQCD b-quarks
* Staggered (Asqtad) light quarks
\# Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_{s} and $(\Delta \Gamma / \Gamma)_{B_{s}}$

7. Summary and future work

\# Results are presented for the first $N_{f}=2+1$ determination of the B_{s}^{0} meson mixing parameters $f_{B_{s}}^{2} B_{B_{s}}, f_{B_{s}}^{2} \frac{B_{S}}{R^{2}}$ and $f_{B_{s}}^{2} \frac{\tilde{B}_{S}}{R^{2}}$

* MILC collaboration $N_{f}=2+1$ configurations
* NRQCD b-quarks
* Staggered (Asqtad) light quarks
\# Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_{s} and $(\Delta \Gamma / \Gamma)_{B_{s}}$
\# Using the HPQCD value $f_{B_{s}}=0.260(29) \mathrm{GeV}$, the extracted bag parameters $B_{B_{s}}, B_{S}$ and \tilde{B}_{S} are consistent with previous $N_{f}=2$ and quenched results.

7. Summary and future work

\# Results are presented for the first $N_{f}=2+1$ determination of the B_{s}^{0} meson mixing parameters $f_{B_{s}}^{2} B_{B_{s}}, f_{B_{s}}^{2} \frac{B_{S}}{R^{2}}$ and $f_{B_{s}}^{2} \frac{\tilde{B}_{S}}{R^{2}}$

* MILC collaboration $N_{f}=2+1$ configurations
* NRQCD b-quarks
* Staggered (Asqtad) light quarks
\# Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_{s} and $(\Delta \Gamma / \Gamma)_{B_{s}}$
\# Using the HPQCD value $f_{B_{s}}=0.260(29) \mathrm{GeV}$, the extracted bag parameters $B_{B_{s}}, B_{S}$ and \tilde{B}_{S} are consistent with previous $N_{f}=2$ and quenched results.

> Need a reduction of the error dominated by statistical+fitting and higher order matching

Need a reduction of the error dominated by statistical+fitting and higher order matching

```
Need a reduction of the error dominated by statistical+fitting and higher order matching
```

\# More data from simulations with the same lattice parameters \rightarrow reduction of statistical and fitting errors
\# Explore different smearings and better fitting approaches
\rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing

```
Need a reduction of the error dominated by statistical+fitting and higher order matching
```

\# More data from simulations with the same lattice parameters
\rightarrow reduction of statistical and fitting errors
\# Explore different smearings and better fitting approaches
\rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing
\# Work on finer lattices (smaller a)
\rightarrow reduction of statistical and perturbative error

```
Need a reduction of the error dominated by statistical+fitting and higher order matching
```

\# More data from simulations with the same lattice parameters \rightarrow reduction of statistical and fitting errors
\# Explore different smearings and better fitting approaches
\rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing
\# Work on finer lattices (smaller a)
\rightarrow reduction of statistical and perturbative error
\# Work on higher order matching \rightarrow reduction of perturbative error

```
    Need a reduction of the error dominated by
statistical+fitting and higher order matching
```

\# More data from simulations with the same lattice parameters \rightarrow reduction of statistical and fitting errors
\# Explore different smearings and better fitting approaches
\rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing
\# Work on finer lattices (smaller a)
\rightarrow reduction of statistical and perturbative error
\# Work on higher order matching \rightarrow reduction of perturbative error
\# Repeat calculations with light (down) valence quark masses (corresponding to B_{d}) and determine $\left[f_{B_{s}}^{2} B_{B_{s}}\right] /\left[f_{B_{d}}^{2} B_{B_{d}}\right]$.
* (Partial) cancellation of chiral corrections
* (Almost complete) cancellation of a^{-3} and higher order matching uncertainties
\# Main sources of error reduced \rightarrow Chiral extrapolation to the physical point using Staggered $\chi \mathrm{P} T$ (incorporates discretization and perturbative corrections).
* More relevant for B_{d}^{0} mixing parameters since we need an extrapolation in both valence and sea quark masses.
(J. Laiho and R. Van de Water, work in progress)
\# Main sources of error reduced \rightarrow Chiral extrapolation to the physical point using Staggered $\chi \mathrm{PT}$ (incorporates discretization and perturbative corrections).
* More relevant for B_{d}^{0} mixing parameters since we need an extrapolation in both valence and sea quark masses.

> (J. Laiho and R. Van de Water, work in progress)
\# Same analysis using Fermilab action to describe b quarks (instead of NRQCD)

* Main advantage: Part of the renormalization can be done non-perturbatively \rightarrow much smaller matching uncert.
(R.T. Evans, A.X. El-Khadra and M. Di Pierro, work in progress)
\times

Staggered Asqtad action

(for light u, d and s valence and sea quarks)
\rightarrow Advantages of staggered fermions

* good chiral properties
* accessible dynamical calculations

Staggered Asqtad action

(for light u, d and s valence and sea quarks)
\rightarrow Advantages of staggered fermions

* good chiral properties
* accessible dynamical calculations
\rightarrow Disadvantage: four tastes of doublers
* Continuum limit: they are degenerate
\rightarrow they can be removed by hand
* Finite spacing: quark-gluon interactions violate the taste symmetry
\rightarrow large $\mathcal{O}\left(a^{2}\right)$ discretization errors
\rightarrow large one-loop corrections

Staggered Asqtad action

(for light u, d and s valence and sea quarks)
\rightarrow Advantages of staggered fermions

* good chiral properties
* accessible dynamical calculations
\rightarrow Disadvantage: four tastes of doublers
* Continuum limit: they are degenerate
\rightarrow they can be removed by hand
* Finite spacing: quark-gluon interactions violate the taste symmetry
\rightarrow large $\mathcal{O}\left(a^{2}\right)$ discretization errors
\rightarrow large one-loop corrections
These problems can be reduced by using improved staggered fermion actions

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.
\# Heavy quark is non-relativistic in bound states
$\rightarrow m_{b} a$ is not an important dynamical scale
(radial and orbital splittings in spectrum of HH and $\mathrm{HI} \ll$ masses)

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.
\# Heavy quark is non-relativistic in bound states
$\rightarrow m_{b} a$ is not an important dynamical scale
(radial and orbital splittings in spectrum of HH and $\mathrm{HI} \ll$ masses)
\rightarrow Use a discretized non-relativistic effective theory: NRQCD

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.
\# Heavy quark is non-relativistic in bound states
$\rightarrow m_{b} a$ is not an important dynamical scale
(radial and orbital splittings in spectrum of HH and $\mathrm{HI} \ll$ masses)
\rightarrow Use a discretized non-relativistic effective theory: NRQCD
\# Non-relativistic expansion of the Dirac lagrangian:
improved by adding higher order in $v / c \ll 1$

$$
\mathcal{L}_{Q}=\bar{\psi}\left(D_{t}-\frac{\vec{D}^{2}}{2 m_{Q} a}-c_{4} \frac{\vec{\sigma} \cdot \vec{B}}{2 m_{Q} a}+\ldots\right) \psi
$$

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.
\# Heavy quark is non-relativistic in bound states
$\rightarrow m_{b} a$ is not an important dynamical scale
(radial and orbital splittings in spectrum of HH and $\mathrm{HI} \ll$ masses)
\rightarrow Use a discretized non-relativistic effective theory: NRQCD
\# Non-relativistic expansion of the Dirac lagrangian:
improved by adding higher order in $v / c \ll 1$

$$
\mathcal{L}_{Q}=\bar{\psi}\left(D_{t}-\frac{\vec{D}^{2}}{2 m_{Q} a}-c_{4} \frac{\vec{\sigma} \cdot \vec{B}}{2 m_{Q} a}+\ldots\right) \psi
$$

* Quark and anti-quark fields decouple $\rightarrow \psi$ is a 2-component spinor

NRQCD action

(for b valence quarks)
\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.
\# Heavy quark is non-relativistic in bound states
$\rightarrow m_{b} a$ is not an important dynamical scale
(radial and orbital splittings in spectrum of HH and $\mathrm{HI} \ll$ masses)
\rightarrow Use a discretized non-relativistic effective theory: NRQCD
\# Non-relativistic expansion of the Dirac lagrangian:
improved by adding higher order in $v / c \ll 1$

$$
\mathcal{L}_{Q}=\bar{\psi}\left(D_{t}-\frac{\vec{D}^{2}}{2 m_{Q} a}-c_{4} \frac{\vec{\sigma} \cdot \vec{B}}{2 m_{Q} a}+\ldots\right) \psi
$$

* Quark and anti-quark fields decouple $\rightarrow \psi$ is a 2-component spinor
* c_{i} fixed pert. or non-pert. matching to QCD

Much faster calculation of quark propagators

$$
\begin{aligned}
& G(\vec{x}, t+1)=\left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2 n}\right)^{n} U^{\dagger}(\vec{x}, t)\left(1-\frac{a H_{0}}{2 n}\right)^{n}\left(1-\frac{a \delta H}{2}\right) G(\vec{x}, t) \\
& G(\vec{x}, t=0)=S(\vec{x})
\end{aligned}
$$

Much faster calculation of quark propagators

$G(\vec{x}, t+1)=\left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2 n}\right)^{n} U^{\dagger}(\vec{x}, t)\left(1-\frac{a H_{0}}{2 n}\right)^{n}\left(1-\frac{a \delta H}{2}\right) G(\vec{x}, t)$
$G(\vec{x}, t=0)=S(\vec{x})$
\# Smearing function $S(\vec{x})$: minimize overlap with radial excitations

Much faster calculation of quark propagators

$G(\vec{x}, t+1)=\left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2 n}\right)^{n} U^{\dagger}(\vec{x}, t)\left(1-\frac{a H_{0}}{2 n}\right)^{n}\left(1-\frac{a \delta H}{2}\right) G(\vec{x}, t)$
$G(\vec{x}, t=0)=S(\vec{x})$
\# Smearing function $S(\vec{x})$: minimize overlap with radial excitations \# On lattice, hamiltonian is (improved through $\mathcal{O}\left(1 / M^{2}\right), \mathcal{O}\left(a^{2}\right)$):

$$
\begin{aligned}
\begin{aligned}
a H_{0}= & -\frac{\Delta^{(2)}}{2\left(a M_{0}\right)} \text { non }- \text { relat. kinetic energy oper. } \\
a \delta H= & -c_{1} \frac{\left.\Delta^{(2)}\right)^{2}}{8\left(a M_{0}\right)^{3}}+c_{2} \frac{i}{8\left(a M_{0}\right)^{2}}(\nabla \cdot \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \cdot \nabla) \\
& -c_{3} \frac{1}{8\left(a M_{0}\right)^{2}} \boldsymbol{\sigma} \cdot(\tilde{\nabla} \times \tilde{\mathbf{E}}-\tilde{\mathbf{E}} \times \tilde{\nabla}) \\
\text { stic and } & \\
\text { zation } & -c_{4} \frac{1}{2\left(a M_{0}\right)} \boldsymbol{\sigma} \cdot \tilde{\mathbf{B}}+c_{5} \frac{\Delta^{(4)}}{24\left(a M_{0}\right)}-c_{6} \frac{\left.\Delta^{(2)}\right)^{2}}{16 n\left(a M_{0}\right)^{2}}+\cdots
\end{aligned}
\end{aligned}
$$

relativistic and
discretization
corrections

