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1. Introduction: B0 − B̄0 mixing parameters

|B0
s/d(H)〉 = p|B0

s/d〉+ q|B̄0
s/d〉 ∆Ms/d = Ms/d(H)−Ms/d(L)

|B0
s/d(L)〉 = p|B0

s/d〉 − q|B̄0
s/d〉 ∆Γs/d = Γs/d(H)− Γs/d(L)

• experimentally: very well measured

∆Md|exp. = 0.508± 0.004 World average

Two-sided bound on ∆Ms from DØ quickly followed by a precise

measurement from CDF

∆Ms|exp. = 17.77± 0.10(stat)± 0.07(syst)ps−1
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s/d〉 ∆Γs/d = Γs/d(H)− Γs/d(L)

• experimentally: very well measured

∆Md|exp. = 0.508± 0.004 World average

Two-sided bound on ∆Ms from DØ quickly followed by a precise

measurement from CDF

∆Ms|exp. = 17.77± 0.10(stat)± 0.07(syst)ps−1

Unofficial world average (R.v.Kooten, FP& CP, April 2006)

∆Γs = 0.097+0.041
−0.042 ps

−1 =⇒
(

∆Γ
Γ

)
s
' 0.15± 0.06
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t /M
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W , ηB

2 is a perturbative QCD correction factor and

S0(xt) is the Inami-Lim function.

Need accurate theor. calculation of f2
Bs
B̂Bs

to match experimental accuracy

# Non-perturbative input

8
3
f2

Bs
BBs (µ)M2

Bs
= 〈B̄0

s |OL|B0
s 〉(µ) with OL ≡ [bi si]V−A[bj sj ]V−A

For ∆Γs one needs either OS and OL, or O3 and OL

OS ≡ [bi si]S−P [bj sj ]S−P

O3 ≡ [bi sj ]S−P [bj si]S−P
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2. Lattice formulations for light

and heavy quarks

MILC Nsea
f = 2 + 1 configurations

* Light quarks (sea and valence): staggered quarks (Asqtad action)

* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through

O(1/M2) O(a2) and leading O(1/M3)

* Improved gluon action

As in previous HPQCD studies of B leptonic and semileptonic decays,

all action parameters fixed via light and heavy-heavy simulations

prior embarking on B physics

Υ 2S − 1S splitting → a−1

Υ → mb

Kaon → ms



3. Relevant four fermion operators

(for ∆Ms and ∆Γs)

OL ≡ [bi si]V−A[bj sj ]V−A

OS ≡ [bi si]S−P [bj sj ]S−P

O3 ≡ [bi sj ]S−P [bj si]S−P

OM1
L ≡

1

2aM0

{
[~∇bi · ~γ si]V−A[bj sj ]V−A + [bi si]V−A[~∇bj · ~γ sj ]V−A

}
OM1

S ≡
1

2aM0

{
[~∇bi · ~γ si]S−P [bj sj ]S−P + [bi si]S−P [~∇bj · ~γ sj ]S−P

}
OM1

3 ≡
1

2aM0

{
[~∇bi · ~γ sj ]S−P [bj si]S−P + [bi sj ]S−P [~∇bj · ~γ si]S−P

}
with i, j colour indices and aM0 the bare b mass in lattice units.

 lowest order in 1/M

* Dimension 7 operators OM1
X required at O(ΛQCD/M)

:
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[~∇bi · ~γ sj ]S−P [bj si]S−P + [bi sj ]S−P [~∇bj · ~γ si]S−P

}
with i, j colour indices and aM0 the bare b mass in lattice units.

 lowest order in 1/M

* Dimension 7 operators OM1
X required at O(ΛQCD/M)

* O3 and OL lead to smaller theoretical uncertainties in the calculation

of ∆Γs than OS and OL ( Lenz & Nierste ):

〈O3〉 = −〈OS〉 − 1/2〈OL〉+O(1/M)



4. One-loop matching

The input for the SM prediction for ∆Ms is

〈OL〉MS(µ) ≡
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(
ζLL
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)]

* 〈OX〉: operator’s matrix elements in the lattice theory

* The one-loop renormalization coefficients ρXY = ρMS
XY (µ)− ρlatt.

XY (1/a)

* ζXY
10 are necessary to subtract O

(
αs
aM

)
power law cont. from 〈OM1

L 〉



=⇒ Similarly one can define bag parameters for the operators

OS and O3 entering in the calculation of ∆Γs
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* Analogous matching relations

* Renormalization of these operators at one-loop does not involve

new lattice operators



5. Numerical simulations

We calculate both 3-point (for any Q̂ = QX , Q
1j
X ) and 2-point correlators

C(4f)(t1, t2) =
∑

~x1,~x2

〈0|ΦB̄s
(~x1, t1)

[
Q̂
]
(0)Φ†

B̄s
(~x2,−t2)|0〉

C(B)(t) =
∑
~x

〈0|ΦB̄s
(~x, t)Φ†

B̄s
(~0, 0)|0〉

* ΦB̄s
(~x, t) is an interpolating operator for the Bs meson.
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C(B)(t) =
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~x

〈0|ΦB̄s
(~x, t)Φ†

B̄s
(~0, 0)|0〉

* ΦB̄s
(~x, t) is an interpolating operator for the Bs meson.

* We work with 1 ≤ t1, t2 ≤ 16.

* No smearing ( minimize overlap with radial excitations).

* Physical valence s and b quarks (fixed from Kaon and Υ masses).

* Two ensembles of MILC configurations (560 and 414 conf.) with

(msea
u = msea

d )/ms = 0.25, 0.50 and a−1 = 1.6GeV.



Fitting

We carried out bayesian simultaneous fits of the 3-point and 2-point

correlators to the forms

C(4f)(t1, t2) =

Nexp−1∑
j,k=0

Ajk (−1)j·t1 (−1)k·t2 e−E
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B (t1−1) e−E

(k)
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CB(t) =

Nexp−1∑
j=0

ξj (−1)j·t e−E
(j)
B (t−1)
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Fitting

We carried out bayesian simultaneous fits of the 3-point and 2-point

correlators to the forms

C(4f)(t1, t2) =

Nexp−1∑
j,k=0

Ajk (−1)j·t1 (−1)k·t2 e−E
(j)
B (t1−1) e−E

(k)
B (t2−1)

CB(t) =

Nexp−1∑
j=0

ξj (−1)j·t e−E
(j)
B (t−1)

* The hadronic matrix element of any 4-fermion operator Q̂ = OX , O
1j
X

defined before is given by

〈Q̂〉 ≡ 〈B̄s|Q̂|Bs〉 = A00
ξ0

* Fit directly to C(4f) and CB rather than take ratios

* Use entire range 1 ≤ t1, t2 ≤ 16

* We let Nexp ≤ 7− 9



6. Main results to date

mf/ms = 0.25 mf/ms = 0.50

fBs

√
B̂Bs [GeV] 0.281(21) 0.289(22)

fBs

√
BMS

Bs
(mb) [GeV] 0.227(17) 0.233(17)

fBs

√
BMS

S (mb)

R
[GeV] 0.295(22) 0.301(23)

fBs

√
B̃MS

S (mb)

R
[GeV] 0.305(23) 0.310(23)

〈OL〉MS(µ) ≡ 8
3
f2

Bs
BMS

Bs
(µ)M2

Bs
〈OS〉MS

(µ) ≡ − 5
3
f2

Bs

BMS
S (µ)

R2 M2
Bs

〈O3〉MS
(µ) ≡ 1

3
f2

Bs

B̃MS
S (µ)

R2 M2
Bs
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6. Main results to date

mf/ms = 0.25 mf/ms = 0.50

fBs

√
BMS

Bs
(mb) [GeV] 0.227(17) 0.233(17)

Main Errors in f2
Bs
BBs (mb)

Statistical + Fitting 9 %

Higher Order Matching 9 %

Discretization 4 %

Relativistic 3 %

Scale (a−3) 5 %

Total 15 %

# Light sea quark mass dependence smaller than current errors ( 1%-3%)

→ use the mf/ms = 0.25 results in the following comparison

with experimental data.
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∆Ms|theor. = 20.3± 3.0± 0.8 ps−1

* first error: f2
Bs
B̂Bs

* second error: other uncert. dominated

by |V ∗
tsVtb|2 error estimate

# Conversely, one can use ∆Ms|exp. and our value of f2
Bs
B̂Bs to get

|V ∗
tsVtb| = (3.8± 0.3± 0.1)× 10−2
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−0.042 ps
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(
∆Γ

Γ

)theor.

Bs

=

(
1

245MeV

)2

0.170
(
f2

Bs
BBs

)
+ 0.059R2

f2
Bs
B̃S
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− 0.044f2
Bs


# Inserting HPQCD’s fBs = 0.260(29)GeV, R2 ≡ (mb+ms)2

M2
Bs

= 0.652 and

our results for fBB
2
B(

∆Γ
Γ

)theor.

Bs

= 0.16± 0.03± 0.02



Comparison with other (lattice) work

mf /ms = 0.25 mf /ms = 0.50
JLQCD

(Nf = 2)

BMS
Bs

(mb) 0.76(11) 0.80(12) -

BMS
Bs

(mb)

(no 1/M correc.)
0.88(13) 0.92(14) 0.85(6)

B̂Bs
1.17(17) 1.23(18) 1.30(9)

mf /ms = 0.25 mf /ms = 0.50
Hashimoto et al.

(quenched)

BMS
S

(mb)
R2 1.29(19) 1.34(20) 1.24(16)

B̃MS
S

(mb)
R2 1.38(21) 1.42(21) -

Becirevic et al.

(quenched)

BMS
S (mb) 0.84(13) 0.87(13) 0.84(2)(4)

B̃MS
S (mb) 0.90(14) 0.93(14) 0.91(3)(8)
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Need a reduction of the error dominated by

statistical+fitting and higher order matching

# More data from simulations with the same lattice parameters

→ reduction of statistical and fitting errors

# Explore different smearings and better fitting approaches

→ reduction of fitting errors

* More stable fits using preliminary results with smearing

# Work on finer lattices (smaller a)

→ reduction of statistical and perturbative error

# Work on higher order matching → reduction of perturbative error

# Repeat calculations with light (down) valence quark masses

(corresponding to Bd) and determine [f2
Bs
BBs ]/[f2

Bd
BBd

].

* (Partial) cancellation of chiral corrections

* (Almost complete) cancellation of a−3 and higher order

matching uncertainties
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# Main sources of error reduced → Chiral extrapolation to the physical

point using Staggered χPT (incorporates discretization and perturbative

corrections).

* More relevant for B0
d mixing parameters since we need an

extrapolation in both valence and sea quark masses.

(J. Laiho and R. Van de Water, work in progress)

# Same analysis using Fermilab action to describe b quarks

(instead of NRQCD )

* Main advantage: Part of the renormalization can be done

non-perturbatively → much smaller matching uncert.

(R.T. Evans, A.X. El-Khadra and M. Di Pierro, work in progress)
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Staggered Asqtad action

(for light u, d and s valence and sea quarks)

→ Advantages of staggered fermions

* good chiral properties

* accessible dynamical calculations

→ Disadvantage: four tastes of doublers

* Continuum limit: they are degenerate

→ they can be removed by hand

* Finite spacing: quark-gluon interactions violate

the taste symmetry

→ large O(a2) discretization errors

→ large one-loop corrections

These problems can be reduced by using

improved staggered fermion actions

J.F.Lagae and D.K.Sinclair

G.P.Lepage
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NRQCD action

(for b valence quarks)

# Problem is discretization errors (' mQa, (mQa)
2, · · ·) if mQa is large.

# Heavy quark is non-relativistic in bound states

→ mba is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and Hl << masses)

→ Use a discretized non-relativistic effective theory: NRQCD

# Non-relativistic expansion of the Dirac lagrangian:

improved by adding higher order in v/c << 1

LQ = ψ

(
Dt −

~D2

2mQa
− c4

~σ · ~B
2mQa

+ . . .

)
ψ

∗ Quark and anti-quark fields decouple
→ ψ is a 2-component spinor

∗ ci fixed pert. or non-pert. matching to QCD
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Much faster calculation of quark propagators

G(~x, t+ 1) =
(
1− aδH

2

)(
1− aH0

2n

)n
U†(~x, t)

(
1− aH0

2n

)n (
1− aδH

2

)
G(~x, t)

G(~x, t = 0) = S(~x)

# Smearing function S(~x): minimize overlap with radial excitations

# On lattice, hamiltonian is (improved through O(1/M2), O(a2)):

aH0 = −
∆(2)

2(aM0)
non− relat.kinetic energy oper.

aδH = −c1
(∆(2))2

8(aM0)3
+ c2

i

8(aM0)2

(
∇ · Ẽ− Ẽ · ∇

)
−c3

1

8(aM0)2
σ · (∇̃ × Ẽ− Ẽ× ∇̃)

−c4
1

2(aM0)
σ · B̃ + c5

∆(4)

24(aM0)
− c6

(∆(2))2

16n(aM0)2
+ · · ·

relativistic and

discretization

corrections


