$B_s^0 - \overline{B}_s^0$ mixing parameters with $N_f = 2 + 1$ sea quarks in lattice QCD

Elvira Gámiz

In collaboration with:

Emel Dalgic(Vancouver), Alan Gray (Ohio), Christine T.H. Davies (Glasgow), G. Peter Lepage (Cornell), Junko Shigemitsu (Ohio), Howard Trottier (Vancouver) and Matthew Wingate (Cambridge)

HPQCD Collaboration

· PHENO 07, 8th May 2007 ·

1. Introduction: $B_0 - \overline{B}_0$ mixing parameters

$$|B^{0}_{s/d}(H)\rangle = p|B^{0}_{s/d}\rangle + q|\bar{B}^{0}_{s/d}\rangle$$
$$|B^{0}_{s/d}(L)\rangle = p|B^{0}_{s/d}\rangle - q|\bar{B}^{0}_{s/d}\rangle$$

 $\Delta M_{s/d} = M_{s/d}(H) - M_{s/d}(L)$ $\Delta \Gamma_{s/d} = \Gamma_{s/d}(H) - \Gamma_{s/d}(L)$

experimentally: very well measured

 $\Delta M_d|_{exp.} = 0.508 \pm 0.004$ | World average

Two-sided bound on ΔM_s from DØ quickly followed by a precise measurement from CDF

 $\Delta M_s|_{exp.} = 17.77 \pm 0.10(stat) \pm 0.07(syst)ps^{-1}$

1. Introduction: $B_0 - \overline{B}_0$ mixing parameters

$$|B^{0}_{s/d}(H)\rangle = p|B^{0}_{s/d}\rangle + q|\bar{B}^{0}_{s/d}\rangle$$
$$|B^{0}_{s/d}(L)\rangle = p|B^{0}_{s/d}\rangle - q|\bar{B}^{0}_{s/d}\rangle$$

 $\Delta M_{s/d} = M_{s/d}(H) - M_{s/d}(L)$ $\Delta \Gamma_{s/d} = \Gamma_{s/d}(H) - \Gamma_{s/d}(L)$

experimentally: very well measured

 $\Delta M_d|_{exp.} = 0.508 \pm 0.004$ World average

Two-sided bound on ΔM_s from DØ quickly followed by a precise measurement from CDF

$$\Delta M_s|_{exp.} = 17.77 \pm 0.10(stat) \pm 0.07(syst)ps^{-1}$$

Unofficial world average (R.v.Kooten, FP& CP, April 2006)

$$\Delta\Gamma_s = 0.097^{+0.041}_{-0.042} \, ps^{-1} \Longrightarrow \left| \left(\frac{\Delta\Gamma}{\Gamma} \right)_s \simeq 0.15 \pm 0.06 \right|$$

$$\Delta M_s|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{ts}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_s}^2 \hat{B}_{B_s}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

$$\Delta M_s|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} \underbrace{|V_{ts}^* V_{tb}|^2}_{5\%} \eta_2^B S_0(x_t) M_{B_s} f_{B_s}^2 \hat{B}_{B_s}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

$$\Delta M_s|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} \underbrace{|V_{ts}^* V_{tb}|^2}_{5\%} \eta_2^B S_0(x_t) M_{B_s} \underbrace{f_{B_s}^2 \hat{B}_{B_s}}_{>30\%}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

$$\Delta M_{s}|_{theor.} = \frac{G_{F}^{2} M_{W}^{2}}{6\pi^{2}} \underbrace{|V_{ts}^{*} V_{tb}|^{2}}_{5\%} \eta_{2}^{B} S_{0}(x_{t}) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30\%}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_s}^2 \hat{B}_{B_s}$ to match experimental accuracy

$$\Delta M_{s}|_{theor.} = \frac{G_{F}^{2} M_{W}^{2}}{6\pi^{2}} \underbrace{|V_{ts}^{*} V_{tb}|^{2}}_{5\%} \eta_{2}^{B} S_{0}(x_{t}) M_{B_{s}} \underbrace{f_{B_{s}}^{2} \hat{B}_{B_{s}}}_{\geq 30\%}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_s}^2 \hat{B}_{B_s}$ to match experimental accuracy

Non-perturbative input

 $\frac{8}{3} f_{B_s}^2 B_{B_s}(\mu) M_{B_s}^2 = \langle \bar{B_s^0} | O_L | B_s^0 \rangle(\mu) \quad \text{with} \quad O_L \equiv [\bar{b^i} \, s^i]_{V-A} [\bar{b^j} \, s^j]_{V-A}$

$$\Delta M_{s}|_{theor.} = \frac{G_{F}^{2}M_{W}^{2}}{6\pi^{2}} \underbrace{|V_{ts}^{*}V_{tb}|^{2}}_{5\%} \eta_{2}^{B}S_{0}(x_{t})M_{B_{s}}\underbrace{f_{B_{s}}^{2}\hat{B}_{B_{s}}}_{\geq 30\%}$$

where $x_t = m_t^2/M_W^2$, η_2^B is a perturbative QCD correction factor and $S_0(x_t)$ is the Inami-Lim function.

Need accurate theor. calculation of $f_{B_s}^2 \hat{B}_{B_s}$ to match experimental accuracy

Non-perturbative input

 $\frac{8}{3} f_{B_s}^2 B_{B_s}(\mu) M_{B_s}^2 = \langle \bar{B_s^0} | O_L | B_s^0 \rangle(\mu) \quad \text{with} \quad O_L \equiv [\bar{b^i} \, s^i]_{V-A} [\bar{b^j} \, s^j]_{V-A}$

For $\Delta \Gamma_s$ one needs either O_S and O_L , or O_3 and O_L

$$O_{S} \equiv [\overline{b^{i}} s^{i}]_{S-P} [\overline{b^{j}} s^{j}]_{S-P}$$
$$O_{3} \equiv [\overline{b^{i}} s^{j}]_{S-P} [\overline{b^{j}} s^{i}]_{S-P}$$

MILC $N_f^{sea} = 2 + 1$ configurations

Light quarks (sea and valence): improved staggered quarks (Asqtad)

- * good chiral properties
- * accessible dynamical simulations

MILC $N_f^{sea} = 2 + 1$ configurations

Light quarks (sea and valence): improved staggered quarks (Asqtad)

- * good chiral properties
- * accessible dynamical simulations

(Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}(1/M^2) \mathcal{O}(a^2)$ and leading $\mathcal{O}(1/M^3)$

* Simpler and faster algorithms to calculate b propagator

MILC $N_f^{sea} = 2 + 1$ configurations

Light quarks (sea and valence): improved staggered quarks (Asqtad)

- * good chiral properties
- * accessible dynamical simulations

(Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through $\mathcal{O}(1/M^2) \mathcal{O}(a^2)$ and leading $\mathcal{O}(1/M^3)$

* Simpler and faster algorithms to calculate b propagator

Improved gluon action

MILC $N_f^{sea} = 2 + 1$ configurations

* Light quarks (sea and valence): staggered quarks (Asqtad action)

* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through ${\cal O}(1/M^2) \ {\cal O}(a^2)$ and leading ${\cal O}(1/M^3)$

* Improved gluon action

MILC $N_f^{sea} = 2 + 1$ configurations

* Light quarks (sea and valence): staggered quarks (Asqtad action)

* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through ${\cal O}(1/M^2) \ {\cal O}(a^2)$ and leading ${\cal O}(1/M^3)$

* Improved gluon action

As in previous HPQCD studies of *B* leptonic and semileptonic decays, all action parameters fixed via light and heavy-heavy simulations prior embarking on B physics

MILC $N_f^{sea} = 2 + 1$ configurations

* Light quarks (sea and valence): staggered quarks (Asqtad action)

* (Heavy) b quarks: Non Relativistic QCD (NRQCD) improved through ${\cal O}(1/M^2) \ {\cal O}(a^2)$ and leading ${\cal O}(1/M^3)$

* Improved gluon action

As in previous HPQCD studies of *B* leptonic and semileptonic decays, all action parameters fixed via light and heavy-heavy simulations prior embarking on B physics

$$\Upsilon \quad 2S - 1S$$
 splitting $\rightarrow a^{-1}$
 $\Upsilon \quad \rightarrow \quad m_b$
Kaon $\rightarrow \quad m_s$

3. Relevant four fermion operators

(for ΔM_s and $\Delta \Gamma_s$)

$$\begin{array}{lll}
O_{L} &\equiv & [\overline{b^{i}} \, s^{i}]_{V-A} [\overline{b^{j}} \, s^{j}]_{V-A} \\
O_{S} &\equiv & [\overline{b^{i}} \, s^{i}]_{S-P} [\overline{b^{j}} \, s^{j}]_{S-P} \\
O_{3} &\equiv & [\overline{b^{i}} \, s^{j}]_{S-P} [\overline{b^{j}} \, s^{i}]_{S-P} \\
O_{L}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla}\overline{b^{i}} \cdot \vec{\gamma} \, s^{i}]_{V-A} [\overline{b^{j}} \, s^{j}]_{V-A} + [\overline{b^{i}} \, s^{i}]_{V-A} [\vec{\nabla}\overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{V-A} \right\} \\
O_{S}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla}\overline{b^{i}} \cdot \vec{\gamma} \, s^{i}]_{S-P} [\overline{b^{j}} \, s^{j}]_{S-P} + [\overline{b^{i}} \, s^{i}]_{S-P} [\vec{\nabla}\overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{S-P} \right\} \\
O_{3}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla}\overline{b^{i}} \cdot \vec{\gamma} \, s^{j}]_{S-P} [\overline{b^{j}} \, s^{i}]_{S-P} + [\overline{b^{i}} \, s^{j}]_{S-P} [\vec{\nabla}\overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{S-P} \right\} \\
\end{array}$$

with i, j colour indices and aM_0 the bare **b** mass in lattice units.

* Dimension 7 operators O_X^{M1} required at $\mathcal{O}(\Lambda_{QCD}/M)$

3. Relevant four fermion operators

(for ΔM_s and $\Delta \Gamma_s$)

$$\begin{array}{lll}
O_{L} &\equiv & [\overline{b^{i}} \, s^{i}]_{V-A} [\overline{b^{j}} \, s^{j}]_{V-A} \\
O_{S} &\equiv & [\overline{b^{i}} \, s^{i}]_{S-P} [\overline{b^{j}} \, s^{j}]_{S-P} \\
O_{3} &\equiv & [\overline{b^{i}} \, s^{j}]_{S-P} [\overline{b^{j}} \, s^{i}]_{S-P} \\
O_{L}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} \, s^{i}]_{V-A} [\overline{b^{j}} \, s^{j}]_{V-A} + [\overline{b^{i}} \, s^{i}]_{V-A} [\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{V-A} \right\} \\
O_{S}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} \, s^{i}]_{S-P} [\overline{b^{j}} \, s^{j}]_{S-P} + [\overline{b^{i}} \, s^{i}]_{S-P} [\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{S-P} \right\} \\
O_{3}^{M1} &\equiv & \frac{1}{2aM_{0}} \left\{ [\vec{\nabla} \overline{b^{i}} \cdot \vec{\gamma} \, s^{j}]_{S-P} [\overline{b^{j}} \, s^{j}]_{S-P} + [\overline{b^{i}} \, s^{j}]_{S-P} [\vec{\nabla} \overline{b^{j}} \cdot \vec{\gamma} \, s^{j}]_{S-P} \right\} \\
\end{array}$$

with i, j colour indices and aM_0 the bare **b** mass in lattice units.

* Dimension 7 operators O_X^{M1} required at $\mathcal{O}(\Lambda_{QCD}/M)$

* O_3 and O_L lead to smaller theoretical uncertainties in the calculation of $\Delta\Gamma_s$ than O_S and O_L (Lenz & Nierste):

$$\langle O_3 \rangle = -\langle O_S \rangle - 1/2 \langle O_L \rangle + \mathcal{O}(1/M)$$

The input for the SM prediction for ΔM_s is

$$\langle O_L \rangle^{\overline{MS}}(\mu) \equiv \frac{8}{3} f_{B_s}^2 B_{B_s}^{\overline{MS}}(\mu) M_{B_s}^2$$

that is related to the lattice operators through $\mathcal{O}(\alpha_s)$, $\mathcal{O}\left(\frac{\Lambda_{QCD}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_s}{aM}\right)$ by

$$\frac{a^{3}}{2M_{B_{s}}} \langle O_{L} \rangle^{\overline{MS}}(\mu) = \left[1 + \alpha_{s} \cdot \rho_{LL}\right] \langle O_{L} \rangle (1/a) + \alpha_{s} \cdot \rho_{LS} \langle O_{S} \rangle (1/a) + \left[\langle O_{L}^{M1} \rangle (1/a) - \alpha_{s} \left(\zeta_{10}^{LL} \langle O_{L} \rangle (1/a) + \zeta_{10}^{LS} \langle O_{S} \rangle (1/a) \right) \right]$$

The input for the SM prediction for ΔM_s is

$$\langle O_L \rangle^{\overline{MS}}(\mu) \equiv \frac{8}{3} f_{B_s}^2 B_{B_s}^{\overline{MS}}(\mu) M_{B_s}^2$$

that is related to the lattice operators through $\mathcal{O}(\alpha_s)$, $\mathcal{O}\left(\frac{\Lambda_{QCD}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_s}{aM}\right)$ by

$$\frac{a^{3}}{2M_{B_{s}}} \langle O_{L} \rangle^{\overline{MS}}(\mu) = \left[1 + \alpha_{s} \cdot \rho_{LL}\right] \langle O_{L} \rangle (1/a) + \alpha_{s} \cdot \rho_{LS} \langle O_{S} \rangle (1/a) + \left[\langle O_{L}^{M1} \rangle (1/a) - \alpha_{s} \left(\zeta_{10}^{LL} \langle O_{L} \rangle (1/a) + \zeta_{10}^{LS} \langle O_{S} \rangle (1/a) \right) \right]$$

* $\langle O_X \rangle$: operator's matrix elements in the lattice theory

The input for the SM prediction for ΔM_s is

$$\langle O_L \rangle^{\overline{MS}}(\mu) \equiv \frac{8}{3} f_{B_s}^2 B_{B_s}^{\overline{MS}}(\mu) M_{B_s}^2$$

that is related to the lattice operators through $\mathcal{O}(\alpha_s)$, $\mathcal{O}\left(\frac{\Lambda_{QCD}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_s}{aM}\right)$ by

$$\frac{a^{3}}{2M_{B_{s}}} \langle O_{L} \rangle^{\overline{MS}}(\mu) = \left[1 + \alpha_{s} \cdot \rho_{LL}\right] \langle O_{L} \rangle (1/a) + \alpha_{s} \cdot \rho_{LS} \langle O_{S} \rangle (1/a) + \left[\langle O_{L}^{M1} \rangle (1/a) - \alpha_{s} \left(\zeta_{10}^{LL} \langle O_{L} \rangle (1/a) + \zeta_{10}^{LS} \langle O_{S} \rangle (1/a) \right) \right]$$

* $\langle O_X \rangle$: operator's matrix elements in the lattice theory

* The one-loop renormalization coefficients $\rho_{XY} = \rho_{XY}^{\overline{MS}}(\mu) - \rho_{XY}^{latt.}(1/a)$

The input for the SM prediction for ΔM_s is

$$\langle O_L \rangle^{\overline{MS}}(\mu) \equiv \frac{8}{3} f_{B_s}^2 B_{B_s}^{\overline{MS}}(\mu) M_{B_s}^2$$

that is related to the lattice operators through $\mathcal{O}(\alpha_s)$, $\mathcal{O}\left(\frac{\Lambda_{QCD}}{M}\right)$ and $\mathcal{O}\left(\frac{\alpha_s}{aM}\right)$ by

$$\frac{a^{3}}{2M_{B_{s}}} \langle O_{L} \rangle^{\overline{MS}}(\mu) = \left[1 + \alpha_{s} \cdot \rho_{LL}\right] \langle O_{L} \rangle (1/a) + \alpha_{s} \cdot \rho_{LS} \langle O_{S} \rangle (1/a) + \left[\langle O_{L}^{M1} \rangle (1/a) - \alpha_{s} \left(\zeta_{10}^{LL} \langle O_{L} \rangle (1/a) + \zeta_{10}^{LS} \langle O_{S} \rangle (1/a) \right) \right]$$

* $\langle O_X \rangle$: operator's matrix elements in the lattice theory

* The one-loop renormalization coefficients $\rho_{XY} = \rho_{XY}^{\overline{MS}}(\mu) - \rho_{XY}^{latt.}(1/a)$ * ζ_{10}^{XY} are necessary to subtract $\mathcal{O}\left(\frac{\alpha_s}{aM}\right)$ power law cont. from $\langle O_L^{M1} \rangle$ \implies Similarly one can define bag parameters for the operators O_S and O_3 entering in the calculation of $\Delta\Gamma_s$

$$\langle O_S \rangle_{(\mu)}^{\overline{MS}} \equiv -\frac{5}{3} f_{B_s}^2 \frac{B_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2; \quad \langle O_3 \rangle_{(\mu)}^{\overline{MS}} \equiv \frac{1}{3} f_{B_s}^2 \frac{\tilde{B}_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2$$

with
$$rac{1}{R^2}\equiv rac{M_{B_s}^2}{(\overline{m}_b+\overline{m}_s)^2}$$

 \implies Similarly one can define bag parameters for the operators O_S and O_3 entering in the calculation of $\Delta\Gamma_s$

$$\langle O_S \rangle_{(\mu)}^{\overline{MS}} \equiv -\frac{5}{3} f_{B_s}^2 \frac{B_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2; \quad \langle O_3 \rangle_{(\mu)}^{\overline{MS}} \equiv \frac{1}{3} f_{B_s}^2 \frac{\tilde{B}_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2$$

with $\frac{1}{R^2} \equiv \frac{M_{B_s}^2}{(\overline{m}_b + \overline{m}_s)^2}$

* Analogous matching relations

* Renormalization of these operators at one-loop does not involve new lattice operators

We calculate both 3-point (for any $\hat{Q} = Q_X, Q_X^{1j}$) and 2-point correlators

$$C^{(4f)}(t_1, t_2) = \sum_{\vec{x}_1, \vec{x}_2} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}_1, t_1) \left[\hat{Q} \right] \langle 0 \rangle \Phi_{\bar{B}_s}^{\dagger}(\vec{x}_2, -t_2) | 0 \rangle$$

$$C^{(B)}(t) = \sum_{\vec{x}} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}, t) \Phi^{\dagger}_{\bar{B}_s}(\vec{0}, 0) | 0 \rangle$$

* $\Phi_{\bar{B}_s}(\vec{x},t)$ is an interpolating operator for the B_s meson.

We calculate both 3-point (for any $\hat{Q} = Q_X, Q_X^{1j}$) and 2-point correlators

$$C^{(4f)}(t_1, t_2) = \sum_{\vec{x}_1, \vec{x}_2} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}_1, t_1) \left[\hat{Q} \right] \langle 0 \rangle \Phi_{\bar{B}_s}^{\dagger}(\vec{x}_2, -t_2) | 0 \rangle$$

$$C^{(B)}(t) = \sum_{\vec{x}} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}, t) \Phi^{\dagger}_{\bar{B}_s}(\vec{0}, 0) | 0 \rangle$$

* $\Phi_{\bar{B}_s}(\vec{x},t)$ is an interpolating operator for the B_s meson.

* We work with $1 \le t_1, t_2 \le 16$.

We calculate both 3-point (for any $\hat{Q} = Q_X, Q_X^{1j}$) and 2-point correlators

$$C^{(4f)}(t_1, t_2) = \sum_{\vec{x}_1, \vec{x}_2} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}_1, t_1) \left[\hat{Q} \right] \langle 0 \rangle \Phi_{\bar{B}_s}^{\dagger}(\vec{x}_2, -t_2) | 0 \rangle$$

$$C^{(B)}(t) = \sum_{\vec{x}} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}, t) \Phi^{\dagger}_{\bar{B}_s}(\vec{0}, 0) | 0 \rangle$$

* $\Phi_{\bar{B}_s}(\vec{x},t)$ is an interpolating operator for the B_s meson.

* We work with $1 \le t_1, t_2 \le 16$.

* No smearing (minimize overlap with radial excitations).

We calculate both 3-point (for any $\hat{Q} = Q_X, Q_X^{1j}$) and 2-point correlators

$$C^{(4f)}(t_1, t_2) = \sum_{\vec{x}_1, \vec{x}_2} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}_1, t_1) \left[\hat{Q} \right] \langle 0 \rangle \Phi_{\bar{B}_s}^{\dagger}(\vec{x}_2, -t_2) | 0 \rangle$$

$$C^{(B)}(t) = \sum_{\vec{x}} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}, t) \Phi^{\dagger}_{\bar{B}_s}(\vec{0}, 0) | 0 \rangle$$

* $\Phi_{\bar{B}_s}(\vec{x},t)$ is an interpolating operator for the B_s meson.

- * We work with $1 \le t_1, t_2 \le 16$.
- * No smearing (minimize overlap with radial excitations).
- * Physical valence s and b quarks (fixed from Kaon and Υ masses).

We calculate both 3-point (for any $\hat{Q} = Q_X, Q_X^{1j}$) and 2-point correlators

$$C^{(4f)}(t_1, t_2) = \sum_{\vec{x}_1, \vec{x}_2} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}_1, t_1) \left[\hat{Q} \right] \langle 0 \rangle \Phi_{\bar{B}_s}^{\dagger}(\vec{x}_2, -t_2) | 0 \rangle$$

$$C^{(B)}(t) = \sum_{\vec{x}} \langle 0 | \Phi_{\bar{B}_s}(\vec{x}, t) \Phi^{\dagger}_{\bar{B}_s}(\vec{0}, 0) | 0 \rangle$$

* $\Phi_{\bar{B_s}}(\vec{x},t)$ is an interpolating operator for the B_s meson.

- * We work with $1 \le t_1, t_2 \le 16$.
- * No smearing (minimize overlap with radial excitations).
- * Physical valence s and b quarks (fixed from Kaon and Υ masses).
- * Two ensembles of MILC configurations (560 and 414 conf.) with $(m_u^{sea} = m_d^{sea})/m_s = 0.25, 0.50$ and $a^{-1} = 1.6$ GeV.

Fitting

We carried out bayesian **simultaneous** fits of the 3-point and 2-point correlators to the forms

$$C^{(4f)}(t_1, t_2) = \sum_{j,k=0}^{N_{exp}-1} A_{jk} (-1)^{j \cdot t_1} (-1)^{k \cdot t_2} e^{-\frac{E_B^{(j)}(t_1-1)}{B}} e^{-\frac{E_B^{(k)}(t_2-1)}{B}}$$
$$C^B(t) = \sum_{j=0}^{N_{exp}-1} \xi_j (-1)^{j \cdot t} e^{-\frac{E_B^{(j)}(t-1)}{B}}$$

Fitting

We carried out bayesian **simultaneous** fits of the 3-point and 2-point correlators to the forms

$$C^{(4f)}(t_1, t_2) = \sum_{j,k=0}^{N_{exp}-1} A_{jk} (-1)^{j \cdot t_1} (-1)^{k \cdot t_2} e^{-E_B^{(j)}(t_1-1)} e^{-E_B^{(k)}(t_2-1)}$$
$$C^B(t) = \sum_{j=0}^{N_{exp}-1} \xi_j (-1)^{j \cdot t} e^{-E_B^{(j)}(t-1)}$$

* The hadronic matrix element of any 4-fermion operator $\hat{Q} = O_X, O_X^{1j}$ defined before is given by

$$\langle \hat{Q} \rangle \equiv \langle \bar{B_s} | \hat{Q} | B_s \rangle = \frac{A_{00}}{\xi_0}$$

Fitting

We carried out bayesian **simultaneous** fits of the 3-point and 2-point correlators to the forms

$$C^{(4f)}(t_1, t_2) = \sum_{j,k=0}^{N_{exp}-1} A_{jk} (-1)^{j \cdot t_1} (-1)^{k \cdot t_2} e^{-E_B^{(j)}(t_1-1)} e^{-E_B^{(k)}(t_2-1)}$$
$$C^B(t) = \sum_{j=0}^{N_{exp}-1} \xi_j (-1)^{j \cdot t} e^{-E_B^{(j)}(t-1)}$$

* The hadronic matrix element of any 4-fermion operator $\hat{Q} = O_X, O_X^{1j}$ defined before is given by

$$\langle \hat{Q} \rangle \equiv \langle \bar{B_s} | \hat{Q} | B_s \rangle = \frac{A_{00}}{\xi_0}$$

* Fit directly to $C^{(4f)}$ and C^B rather than take ratios

* Use entire range $1 \le t_1, t_2 \le 16$

* We let $N_{exp} \leq 7-9$

6. Main results to date

	$m_f/m_s = 0.25$	$m_f/m_s = 0.50$
$f = \sqrt{\hat{p}} [C \circ V]$	0.001(01)	0.000(00)
$J_{B_s} \bigvee D_{B_s} [\text{Gev}]$	0.201(21)	0.209(22)
$f_{B_s} \sqrt{B_{B_s}^{\overline{MS}}(m_b)}$ [GeV]	0.227(17)	0.233(17)
$f_{B_s} rac{\sqrt{B_S^{\overline{MS}}(m_b)}}{R} [{ m GeV}]$	0.295(22)	0.301(23)
$f_{B_s}rac{\sqrt{ ilde{B}_S^{\overline{MS}}(m_b)}}{R}$ [GeV]	0.305(23)	0.310(23)

 $\langle O_L \rangle^{\overline{MS}}(\mu) \equiv \frac{8}{3} f_{B_s}^2 B_{B_s}^{\overline{MS}}(\mu) M_{B_s}^2 \qquad \langle O_S \rangle_{(\mu)}^{\overline{MS}} \equiv -\frac{5}{3} f_{B_s}^2 \frac{B_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2$ $\langle O_3 \rangle_{(\mu)}^{\overline{MS}} \equiv \frac{1}{3} f_{B_s}^2 \frac{\tilde{B}_S^{\overline{MS}}(\mu)}{R^2} M_{B_s}^2$

6. Main results to date

Main Errors in $f_{B_s}^2 B_{B_s}(m_b)$

Statistical + Fitting	9 %
Higher Order Matching	9 %
Discretization	4 %
Relativistic	3 %
Scale (a^{-3})	5 %
Total	15 %

6. Main results to date

Main Errors in $f_{B_s}^2 B_{B_s}(m_b)$

Statistical + Fitting	9 %
Higher Order Matching	9 %
Discretization	4 %
Relativistic	3 %
Scale (a^{-3})	5 %
Total	15 %

Light sea quark mass dependence smaller than current errors (1%-3%) \rightarrow use the $m_f/m_s = 0.25$ results in the following comparison with experimental data.

Comparison with experiment: ΔM_s

CDF measurement:

 $\Delta M_s|_{exp.} = 17.77 \pm 0.10(stat) \pm 0.07(syst) \, ps^{-1}$

Comparison with experiment: ΔM_s

CDF measurement:

 $\Delta M_s|_{exp.} = 17.77 \pm 0.10(stat) \pm 0.07(syst) \, ps^{-1}$

Standard Model prediction

$$\Delta M_s|_{theor.} = 20.3 \pm 3.0 \pm 0.8 \, ps^{-1}$$

* first error:
$$f_{B_s}^2 \hat{B}_{B_s}$$

* second error: other uncert. dominated by $|V_{ts}^*V_{tb}|^2$ error estimate

Comparison with experiment: ΔM_s

CDF measurement:

 $\Delta M_s|_{exp.} = 17.77 \pm 0.10(stat) \pm 0.07(syst) \, ps^{-1}$

Standard Model prediction

$$\Delta M_s|_{theor.} = 20.3 \pm 3.0 \pm 0.8 \, ps^{-1}$$

* first error:
$$f_{B_s}^2 \hat{B}_{B_s}$$

* second error: other uncert. dominated by $|V_{ts}^*V_{tb}|^2$ error estimate

Conversely, one can use $\Delta M_s|_{exp.}$ and our value of $f_{B_s}^2 \hat{B}_{B_s}$ to get

 $|V_{ts}^*V_{tb}| = (3.8 \pm 0.3 \pm 0.1) \times 10^{-2}$

Comparison with experiment: $\Delta\Gamma_s$

Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$\Delta \Gamma_s^{exp.} = 0.097^{+0.041}_{-0.042} \, ps^{-1} \Longrightarrow \left(\left(\frac{\Delta \Gamma}{\Gamma} \right)_{B_s}^{exp.} \simeq 0.15 \pm 0.06 \right)$$

Comparison with experiment: $\Delta\Gamma_s$

Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$\Delta \Gamma_s^{exp.} = 0.097^{+0.041}_{-0.042} \, ps^{-1} \Longrightarrow \left(\left(\frac{\Delta \Gamma}{\Gamma} \right)_{B_s}^{exp.} \simeq 0.15 \pm 0.06 \right) \right)$$

Use NLO formula of Lenz& Nierste

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_{s}}^{theor.} = \left(\frac{f_{B_{s}}}{245 \text{MeV}}\right)^{2} \left[0.170 B_{B_{s}} + 0.059 \tilde{B}_{S} - 0.044\right]$$

$$\left(\frac{1}{245 \text{MeV}}\right)^{2} \left[0.170 \left(f_{B_{s}}^{2} B_{B_{s}}\right) + 0.059 R^{2} \left(\frac{f_{B_{s}}^{2} \tilde{B}_{S}}{R^{2}}\right) - 0.044 f_{B_{s}}^{2}\right]$$

Comparison with experiment: $\Delta\Gamma_s$

Unofficial experimental world average (R.v.Kooten, FPCP, Vancouver, April 2006)

$$\Delta \Gamma_s^{exp.} = 0.097^{+0.041}_{-0.042} \, ps^{-1} \Longrightarrow \left(\left(\frac{\Delta \Gamma}{\Gamma} \right)_{B_s}^{exp.} \simeq 0.15 \pm 0.06 \right) \right)$$

Use NLO formula of Lenz& Nierste

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s}^{theor.} = \left(\frac{1}{245 \text{MeV}}\right)^2 \left[0.170 \left(f_{B_s}^2 B_{B_s}\right) + 0.059 R^2 \left(\frac{f_{B_s}^2 \tilde{B}_S}{R^2}\right) - 0.044 f_{B_s}^2\right]$$

Inserting HPQCD's $f_{B_s} = 0.260(29)$ GeV, $R^2 \equiv \frac{(\overline{m}_b + \overline{m}_s)^2}{M_{B_s}^2} = 0.652$ and our results for $f_B B_B^2$

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s}^{theor.} = 0.16 \pm 0.03 \pm 0.02$$

Comparison with other (lattice) work

	$m_{\rm c}/m_{\rm c} = 0.25$ $m_{\rm c}/m_{\rm c} = 0$		JLQCD
	$m_f/m_s = 0.25$	$m_f/m_s = 0.23$ $m_f/m_s = 0.30$	
$B_{B_s}^{\overline{MS}}(m_b)$	0.76(11)	0.80(12)	_
$B_{B_s}^{\overline{MS}}(m_b)$ (no 1/M correc.)	0.88(13)	0.92(14)	0.85(6)
\hat{B}_{B_s}	1.17(17)	1.23(18)	1.30(9)

	$m_f/m_s = 0.25$	$m_f/m_s = 0.50$	Hashimoto et al. (quenched)
$rac{B_S^{\overline{MS}}(m_b)}{R^2}$	1.29(19)	1.34(20)	1.24(16)
$rac{ ilde{B}_{S}^{\overline{MS}}(m_{b})}{R^{2}}$	1.38(21)	1.42(21)	_
			Becirevic et al.
			(quenched)
$B_S^{\overline{MS}}(m_b)$	0.84(13)	0.87(13)	0.84(2)(4)
$ ilde{B}_{S}^{\overline{MS}}(m_{b})$	0.90(14)	0.93(14)	0.91(3)(8)

Results are presented for the first $N_f = 2 + 1$ determination of the

 B^0_s meson mixing parameters $f^2_{B_s}B_{B_s}$, $f^2_{B_s}\frac{B_S}{R^2}$ and $f^2_{B_s}\frac{\tilde{B}_S}{R^2}$

- * **MILC** collaboration $N_f = 2 + 1$ configurations
- * NRQCD b-quarks
- * Staggered (Asqtad) light quarks

Results are presented for the **first** $N_f = 2 + 1$ **determination** of the B_s^0 meson mixing parameters $f_{B_s}^2 B_{B_s}$, $f_{B_s}^2 \frac{B_S}{R^2}$ and $f_{B_s}^2 \frac{\tilde{B}_S}{R^2}$

- * **MILC** collaboration $N_f = 2 + 1$ configurations
- * NRQCD b-quarks

* Staggered (Asqtad) light quarks

Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_s and $(\Delta \Gamma / \Gamma)_{B_s}$

Results are presented for the **first** $N_f = 2 + 1$ **determination** of the B_s^0 meson mixing parameters $f_{B_s}^2 B_{B_s}$, $f_{B_s}^2 \frac{B_S}{R^2}$ and $f_{B_s}^2 \frac{\tilde{B}_S}{R^2}$

- * **MILC** collaboration $N_f = 2 + 1$ configurations
- * NRQCD b-quarks

* Staggered (Asqtad) light quarks

- # Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_s and $(\Delta \Gamma / \Gamma)_{B_s}$
- # Using the HPQCD value $f_{B_s} = 0.260(29)$ GeV, the extracted bag parameters B_{B_s} , B_S and \tilde{B}_S are consistent with previous $N_f = 2$ and quenched results.

Results are presented for the **first** $N_f = 2 + 1$ **determination** of the B_s^0 meson mixing parameters $f_{B_s}^2 B_{B_s}$, $f_{B_s}^2 \frac{B_S}{R^2}$ and $f_{B_s}^2 \frac{\tilde{B}_S}{R^2}$

- * **MILC** collaboration $N_f = 2 + 1$ configurations
- * NRQCD b-quarks

* Staggered (Asqtad) light quarks

- # Standard Model predictions using these parameters are consistent with recent experimental determinations of ΔM_s and $(\Delta \Gamma / \Gamma)_{B_s}$
- # Using the HPQCD value $f_{B_s} = 0.260(29)$ GeV, the extracted bag parameters B_{B_s} , B_S and \tilde{B}_S are consistent with previous $N_f = 2$ and quenched results.

Need a reduction of the error dominated by statistical+fitting and higher order matching

More data from simulations with the same lattice parameters
→ reduction of statistical and fitting errors

Explore different smearings and better fitting approaches

- \rightarrow reduction of fitting errors
 - * More stable fits using preliminary results with smearing

More data from simulations with the same lattice parameters → reduction of statistical and fitting errors

Explore different smearings and better fitting approaches

- \rightarrow reduction of fitting errors
 - * More stable fits using preliminary results with smearing

Work on finer lattices (smaller a)

 \rightarrow reduction of statistical and perturbative error

More data from simulations with the same lattice parameters → reduction of statistical and fitting errors

Explore different smearings and better fitting approaches

 \rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing

Work on finer lattices (smaller a)

 \rightarrow reduction of statistical and perturbative error

Work on higher order matching \rightarrow reduction of perturbative error

More data from simulations with the same lattice parameters → reduction of statistical and fitting errors

Explore different smearings and better fitting approaches

 \rightarrow reduction of fitting errors

* More stable fits using preliminary results with smearing

Work on finer lattices (smaller a)

 \rightarrow reduction of statistical and perturbative error

Work on higher order matching \rightarrow reduction of perturbative error

Repeat calculations with light (down) valence quark masses (corresponding to B_d) and determine $[f_{B_s}^2 B_{B_s}]/[f_{B_d}^2 B_{B_d}]$.

* (Partial) cancellation of chiral corrections

* (Almost complete) cancellation of a^{-3} and higher order matching uncertainties

Main sources of error reduced \rightarrow Chiral extrapolation to the physical point using Staggered χ PT (incorporates discretization and perturbative corrections).

* More relevant for B_d^0 mixing parameters since we need an extrapolation in both valence and sea quark masses.

(J. Laiho and R. Van de Water, work in progress)

Main sources of error reduced \rightarrow Chiral extrapolation to the physical point using Staggered χ PT (incorporates discretization and perturbative corrections).

* More relevant for B_d^0 mixing parameters since we need an extrapolation in both valence and sea quark masses.

(J. Laiho and R. Van de Water, work in progress)

Same analysis using Fermilab action to describe b quarks
(instead of NRQCD)

* Main advantage: Part of the renormalization can be done non-perturbatively \rightarrow much smaller matching uncert.

(R.T. Evans, A.X. El-Khadra and M. Di Pierro, work in progress)

Staggered Asqtad action

(for light u, d and s valence and sea quarks)

- \rightarrow Advantages of staggered fermions
 - * good chiral properties
 - * accessible dynamical calculations

Staggered Asqtad action

(for light u, d and s valence and sea quarks)

- \rightarrow Advantages of staggered fermions
 - * good chiral properties
 - * accessible dynamical calculations

 \rightarrow Disadvantage: four **tastes** of doublers

* **Continuum limit**: they are degenerate

 \rightarrow they can be removed by hand

* Finite spacing: quark-gluon interactions violate the taste symmetry

 \rightarrow large $\mathcal{O}(a^2)$ discretization errors

 \rightarrow large one-loop corrections

Staggered Asqtad action

(for light u, d and s valence and sea quarks)

- Advantages of staggered fermions
 - * good chiral properties
 - * accessible dynamical calculations

Disadvantage: four **tastes** of doublers

* **Continuum limit**: they are degenerate

 \rightarrow they can be removed by hand

- * Finite spacing: quark-gluon interactions violate the taste symmetry
 - \rightarrow large $\mathcal{O}(a^2)$ discretization errors
 - \rightarrow large one-loop corrections

These **problems** can be **reduced** by using **J.F.Lagae and D.K.Sinclair** improved staggered fermion actions

G.P.Lepage

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and HI << masses)

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and HI << masses)

 \rightarrow Use a discretized non-relativistic effective theory: NRQCD

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and HI << masses)

 \rightarrow Use a discretized non-relativistic effective theory: NRQCD

Non-relativistic expansion of the Dirac lagrangian: improved by adding higher order in $v/c \ll 1$

$$\mathcal{L}_Q = \overline{\psi} \left(D_t - \frac{\vec{D}^2}{2m_Q a} - \frac{c_4}{2m_Q a} + \dots \right) \psi$$

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and HI << masses)

 \rightarrow Use a discretized non-relativistic effective theory: NRQCD

Non-relativistic expansion of the Dirac lagrangian: improved by adding higher order in $v/c \ll 1$

$$\mathcal{L}_Q = \overline{\psi} \left(D_t - \frac{\vec{D}^2}{2m_Q a} - \frac{\vec{c_4}}{2m_Q a} + \dots \right) \psi$$

* Quark and anti-quark fields decouple $\rightarrow \psi$ is a 2-component spinor

(for *b* valence quarks)

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

(radial and orbital splittings in spectrum of HH and HI << masses)

 \rightarrow Use a discretized non-relativistic effective theory: NRQCD

Non-relativistic expansion of the Dirac lagrangian: improved by adding higher order in $v/c \ll 1$

$$\mathcal{L}_Q = \overline{\psi} \left(D_t - \frac{\vec{D}^2}{2m_Q a} - \frac{c_4}{2m_Q a} + \dots \right) \psi$$

- * Quark and anti-quark fields decouple $\rightarrow \psi$ is a 2-component spinor
- $* c_i$ fixed pert. or non-pert. matching to QCD

Much faster calculation of quark propagators

$$\begin{aligned} G(\vec{x},t+1) &= \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right)^n U^{\dagger}(\vec{x},t) \left(1 - \frac{aH_0}{2n}\right)^n \left(1 - \frac{a\delta H}{2}\right) G(\vec{x},t) \\ G(\vec{x},t=0) &= S(\vec{x}) \end{aligned}$$

Much faster calculation of quark propagators

$$\begin{aligned} G(\vec{x},t+1) &= \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right)^n U^{\dagger}(\vec{x},t) \left(1 - \frac{aH_0}{2n}\right)^n \left(1 - \frac{a\delta H}{2}\right) G(\vec{x},t) \\ G(\vec{x},t=0) &= S(\vec{x}) \end{aligned}$$

Smearing function $S(\vec{x})$: minimize overlap with radial excitations

Much faster calculation of quark propagators

$$\begin{aligned} G(\vec{x},t+1) &= \left(1 - \frac{a\delta H}{2}\right) \left(1 - \frac{aH_0}{2n}\right)^n U^{\dagger}(\vec{x},t) \left(1 - \frac{aH_0}{2n}\right)^n \left(1 - \frac{a\delta H}{2}\right) G(\vec{x},t) \\ G(\vec{x},t=0) &= S(\vec{x}) \end{aligned}$$

Smearing function $S(\vec{x})$: minimize overlap with radial excitations # On lattice, hamiltonian is (improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$):

$$aH_{0} = -\frac{\Delta^{(2)}}{2(aM_{0})} \text{ non - relat. kinetic energy oper.}$$

$$a\delta H = -c_{1} \frac{(\Delta^{(2)})^{2}}{8(aM_{0})^{3}} + c_{2} \frac{i}{8(aM_{0})^{2}} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right)$$

$$-c_{3} \frac{1}{8(aM_{0})^{2}} \boldsymbol{\sigma} \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$$
relativistic and
discretization
corrections
$$-c_{4} \frac{1}{2(aM_{0})} \boldsymbol{\sigma} \cdot \tilde{\mathbf{B}} + c_{5} \frac{\Delta^{(4)}}{24(aM_{0})} - c_{6} \frac{(\Delta^{(2)})^{2}}{16n(aM_{0})^{2}} + \cdots$$