

Across the Time Dimension in Search of Exotic Particles

Max Goncharov for CDF Collaboration

In This Talk ...

Massive Long Lived Particles

general things we do not understand, evidence for something out there, some theories and signatures

CDF Detector

Time-of-Flight (TOF), Track Timing (COT), EMTiming

- Charged Massive Particles (a.k.a. CHAMPs) results from CDF with 1 fb⁻¹
- Neutral Massive Particles (a.k.a. delayed photons) results from CDF with 0.6 fb⁻¹
- Where we would like to go *future searches*

Dark Matter

There is something massive and invisible in the Universe. Can we understand the origin of it?

Dark Matter

Want to find those particle(s)

4

Many different theories. Which direction to go?

Should look everywhere: the answer might be in an unexpected place > signature based searches

Stable Massive Particles

Standard Model extensions predict new massive particles
→Most searches assume particles decay promptly

- Long-lived particles would evade these searches
 - Charged Massive Particles (CHAMPs)
 - Neutral Stable Massive Particles decaying to photons
- →In perfect life all Standard Model backgrounds are zero
- →Often need to develop new tools

CHAMPs and Delayed Photons:

- →all backgrounds are estimated from data
- Ind analysis (learn how to estimate backgrounds, then look at the data in the signal region)
- model-independent results (but also set limits)

5

Massive and Long-Lived

Wide variety of models:

- ≻ m(G) ~ 100-200 GeV
- > G is good dark matter candidate

> small $\Delta m = m(\tilde{X}) - m(\tilde{G}) =>$ large lifetime

SUSY (GMSB) model:

- > neutralino NLSP, m(G) ~ 10 KeV
- > neutralino life-time is unconstrained

Stable Massive Exotic Particles

Can decay:

- inside the detector
- outside the detector
- They can be:
- charged or neutral
- be in events with low ΣP_{T}

long lifetime ~

7

Possible Signatures

signatures should be spectacular

CDF Detector

FERMILAB'S ACCELERATOR CHAIN

CHAMPs – tracking, calorimeters, TOF, muon Delayed Photons – tracking, EM calorimeter

Time of Flight Detector

10

Time Of Flight – scintillators wrapped around tracking chamber (COT) at a 1.45 m. Resolution ~ 100 ps.

To calculate β , need: $\beta \equiv v/c$

- candidate TOF arrival time
- independent event T₀
- path length

Drift chamber is a timing device Each track produces up to 96 hits Each hit has timing information
➢ resolution ~ 200 ps
➢ measure track without event T₀
➢ measure event T₀

Gaussian tails!

New Tool - EMTiming System

~2000 Phototubes

- Large system to add to existing detector (Run Ilb upgrade)
- Put a TDC onto about 2000 phototubes at CDF ($|\eta|$ < 2)
- TDC has 1 ns buckets
- for central detector use passive inductiv off to split PMT anode signal
- ~100% Efficient above thresholds (CEM-5, PEM-2.5 GeV)
- System resolution is ~0.6 ns
- Very uniform, Negligible Noise
- Finished full installation October 2004.
 Started taking data in November (2.0 fb⁻¹)
- Commissioned in 1 week

11

All high P_T events have timing information

http://hepr8.physics.tamu.edu/hep/emtiming/

CHAMP Signature

Champs give a unique signature in the detector

- CHAMPs are heavy
 - →Slow $\beta \equiv v/c < 1$
 - Hard to stop
- CHAMPs are slow
 - →Large *dE/dx* (mostly through ionization) $dE/dX \sim 1/\beta^2$
 - →Long time-of-flight
- > Look for high transverse momentum (P_{τ}) penetrating objects (looks like muon) that are slow (long time-of-flight)

CHAMP Signal Isolation

Use track momentum and velocity measurements to calculate mass

• correlated for signal, uncorrelated for background

Signal events will have large momentum

- signal region $P_T > 40 \text{ GeV/c}$
- control region 20 GeV/c < P_T < 40 GeV/c
- use control region to predict background shape

Analysis Strategy

It is the mass of the muons we are after

- use beta shape in the control region as a shape $m = p \sqrt{1/\beta^2 1}$
- convolute it with the momentum

Show this works for electrons from Ws

- sanity check take electrons with $20 < P_T < 40 \text{ GeV}$
- beta shape + momentum histogram = background prediction
- agrees with data

Show we can predict electrons with $P_T > 40 \text{ GeV}$

Muons:

- split control region in 2: $20 < P_T < 30$ and $30 < P_T < 40$
- show that can predict 2 from 1
- get beta shape for $20 < P_T < 40$
- make prediction for $P_T > 40$ GeV, compare with data in the signal region

14

Backgrounds

Cosmic rays

- Time of cosmic ray tracks uncorrelated with interaction time, could appear to be CHAMPs
- Remove by looking for backward-going track opposite candidate (identified by timing as well)
- Instrumental effects: $t_{Flight} = (t_{TOF} - t_{Event})$ Mismeasured event t_o require TOF and tracking t_0 to agree (0.5 ns) Incorrect TOF for CHAMP candidate require good COT χ^2 when using TOF β Mismeasured momentum can get hight mass for a 6 TeV track with $\beta = 1$ require β significantly different from 1 (β < 0.9)

Check With Electrons

Muon Control Region

Require central muons ($|\eta| < 0.6$)

Verify background shape prediction

• use 20-30 GeV to predict 30-40 GeV region

CHAMPs – Signal Region

No CHAMP candidates above 120 GeV/c². Signalregion events consistent with background prediction

Model Independent Limits

For model independence, find cross section limit for *CHAMPs fiducial to Central Muon Detectors* with $0.4 < \beta < 0.9$ and Pt > 40 GeV

- strongly interacting (stable stop)
 - efficiency 4.6 ±0.5%
 - 95% confidence limit: σ < 41 fb
- weakly interacting (sleptons, charginos)
 - efficiency 20.0±0.6%
 - 95% confidence limit: σ < 9.4 fb
- Model-dependent factors are
 - β and momentum distributions
 - geometric acceptance

New Stable Stop Limits

When We Find CHAMPs

If a mass peak is observed in the CHAMP search, we have many additional handles to prove these are slow particles:

- Calorimeter timing
- Muon timing
- dE/dx

Break

Moving into neutral heavy long-lived particles

Delayed Photons

 γ + Jet + MET

Look for non-prompt y's that take longer to reach calorimeter.
If the x⁰ has a significant lifetime, we can separate the signal from the backgrounds.

Why Photons?

eeyyE_TCandidate Event

Run I

- In addition to γγ+ Energy Imbalance this event has two high energy electron candidates
- Very unusual
- Total Background: (1 ± 1) x 10⁻⁶ Events

Would be nice to have timing for the photons to prove they are from collision

Analysis Strategy

Sample - gamma + Jet + MET look for photons that are late

Want to understand time shapes from various backgrounds Non-collision backgrounds

- general shape from no-track events
- separate beam halo from cosmics
- Standard Model Background
 - event T0 dominates the resolution have to subtract
 - background splits in two
 - guessed the primary vertex correctly
 - guessed the primary vertex incorrectly

We use data in various control regions to normalize shapes and obtain background prediction in the signal region

Delayed Photons

Four Background Sources Non-collision "look-like photons"

- Cosmics
- Beam Halo

Collision photons from Standard Model

- Right vertex
- Wrong vertex

Backgrounds

Non-Collision Backgrounds

- There are lots of tracks in typical collision.
- Non-collision means there are no tracks.
- Cosmics are accidents flat in time
- What about beam halo?

- Most would choose |T| < 6 ns
- We use shapes predictions

Timing Resolutions

WHEN interaction happens - RMS≈1.3 ns
It has to be subtracted from the photon arrival time
Need to reconstruct vertices in space and time

Collision Time Reconstruction

For tracks we reconstruct Z position along the beamline and time as measured by the tracking drift chamber (COT):

Standard Model Photons

Assigning the right vertex is a tricky business as L gets high We can measure how often mistake is made

With electrons we simulate what happens with photons by excluding electron track from vertex reconstruction

Putting It All Together

Delayed Photons

Delayed Photons?

Analysis with More Data

Backup Slides

Reasons to live

→Particles can be long-lived if they have:

- weak coupling constants
- limited phase space
- a conserved quantity
- "hidden valley" (potential barrier)

Papers

Supersymmetry:

- stable stop squark (We use this as our reference model)
 - R. Barbieri, L.J. Hall and Y. Nomura PRD 63, 105007 (2001)
- NLSP stau in gauge-mediated SUSY breaking
 - J.L. Feng, T. Moroi, Phys.Rev. D58 (1998) 035001
- Light strange-beauty squarks
 - K. Cheung and W-S. Hou, Phys.Rev. D70 (2004) 035009
- Light strange-beauty squarks
 - Matthew Strassler, HEP-ph/0607160

Universal Extra Dimensions (UXDs)

- Kaluza-Klein modes of SM particles
 - T. Appelquist, H-C. Cheng, B.A. Dobrescu, PRD 64 (2001) 035002

Long-lived 4th generation quarks

• P.H. Frampton, P.Q. Hung, M. Sher, Phys. Rep. 330 (2000) 263-348.

Cosmics vs Beam Halo

Beam Halo Time Shape

41

 $t(collision) = T_{c} + \sqrt{(T_{T}^{2} + T_{R}^{2})}$ $t(halo) = T_{c} + T_{T}$ $\delta t = T_{T} - \sqrt{(T_{T}^{2} + T_{R}^{2})}$

Tower
$$-9: \delta t \approx -2T_T$$

Center $: \delta t \approx -T_R + T_T$
Tower $9: \delta t \approx -\frac{T_R^2}{2T_T}$