Lepton masses and mixing without Yukawa hierarchies W.A.P. and O.Z. Phys. Rev. D74, 093007 (2006)

•

William A. Ponce Instituto de Física. Universidad de Antioquia. Medellín Colombia PHENO 07 Madison

May 8, 2007

Experimental results

Super-Kamiokande, KamLAND and SNO:

• Experimental results

- Masses for ν_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

Δm^2_{atm}	=	$2.4(1^{+0.21}_{-0.26}) \times 10^{-3} \mathrm{eV}^2,$
Δm^2_{sol}	=	$7.92(1\pm0.09)\times10^{-5}\mathrm{eV}^2,$
$\sin^2 heta_{atm}$	—	$0.44(1^{+0.44}_{-0.22}),$
$\sin^2 heta_{sol}$	=	$0.314(1^{+0.18}_{-0.15}),$
$\sin^2 \theta_{chooz}$	\approx	0.009 .

Implies neutrino oscillations. At least two neutrinos with very small masses.

The explanation requires physics beyond the SM

• Existence of ν_L^c .

(1)

• Breaking of B - L.

Masses for ν_L

Experimental results

- Masses for ν_L
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

• With ν_L^c we can have $\nu_L^c C \nu_L$ Dirac Masses. Requires $h_{\mu}^{\phi} < 10^{-13}$.

- But $\nu_L^c C \nu_L^c$ Majorana Masses. \rightarrow See saw. Requires $M_{\nu^c} \sim 10^{11}$ GeV.
- Alternative: Majorana masses for the I = 1, $\psi_{lL}C\psi_{lL}^c \rightarrow$ triplet Scalar Higgs. Requires a new very small mass scale.
- The Zee Mechanism (one loop): Couple the L = 2 Lorentz scalar $\psi_{lL}C\psi_{lL}$ to h^+ a charged singlet scalar.
- The Zee-Babu mechanism (two loop): couple $e_R^- C e_R^-$ to k^{++} a double charged singlet scalar.

3-3-1

Experimental results

ullet Masses for u_L

• 3-3-1

- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

$SU(3)_c \otimes SU(3)_L \otimes U(1)_X$

- Free of gauge anomalies *iff* N_F multiple of 3.
- Peccei-Quinn symmetry can be easily implemented.
- Third quark family different from other two.
- Scalar sector with good candidates for dark matter.
- Suitable for explaining neutrino properties.
- Strong hierarchy in the Yukawas can be avoided.

Electric Charge Operator

Experimental results

- ullet Masses for u_L
- 3-3-1

• Electric Charge Operator

- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

$$Q = \frac{\lambda_{3L}}{2} + \frac{b\lambda_{8L}}{\sqrt{3}} + XI_3$$

 $b = 1/2, 3/2, 5/2, \dots n/2$

- b = 1/2 models without exotic electric charges.
- b = 3/2 the Pisano-Pleitez-Frampton model.

For b = 1/2 there are:

- 2 one family models reported in the literature.
- 4 different 3 family models reported in the literature.
- There are 4 more three family models.

If exotic electric charges are allowed, there are an ∞ number of models.

Model with Exotic electrons

M.Özer, Phys. Rev. D**54**, 1143 (1996); J.C.Salazar, W.A.Ponce and D.A.Gutierez, Phys. Rev D**75**, 075016 (2007).

• Experimental results

- ullet Masses for u_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
 Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
 CONCLUSIONS

Quarks:

 $Q_{L}^{i} = (u^{i}, d^{i}, U^{i})_{L} \sim (3, 3^{*}, 1/3), \ i = 1, 2.$ Two families. $Q_{L}^{3} = (u^{3}, d^{3}, D)_{L} \sim (3, 3, 0).$ Third family. $U_{L}^{i}, \ i = 1, 2$ two exotic Up quarks. D_{L} an exotic Down quark.

Right-Handed quarks $u_L^{ac} \sim (3^*, 1, -2/3), \ d_L^{ac} \sim (3^*, 1, 1/3)$ $a = 1, 2, 3, \ D_L^c \sim (3^*, 1, 1/3), \ U_L^{ic} \sim (3^*, 1, -2/3).i = 1, 2.$

Leptons:

 $L_{lL} = (\nu_l^0, l^-, E_l^-)_L \sim (1, 3, -2/3), l = e, \mu, \tau.$ Singlets $l_L^+ \sim (1, 1, 1) E_{lL}^+ \sim (1, 1, 1).$ E_{lL} three exotic charged electrons. Right-handed neutrinos are not present.

Scalar sector

- Experimental results
- Masses for ν_{L}
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons

Scalar sector

- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

 $\langle \phi_1 \rangle^T = \langle (\phi_1^+, \phi_1^0, \phi_1^{'0}) \rangle = \langle (0, v_1, 0) \rangle \sim (1, 3, 1/3)$ $\langle \phi_2 \rangle^T = \langle (\phi_2^0, \phi_2^-, \phi_2^{'-}) \rangle = \langle (v_2, 0, 0) \rangle \sim (1, 3, -2/3)$ $\langle \phi_3 \rangle^T = \langle (\phi_3^+, \phi_3^0, \phi_3^{'0}) \rangle = \langle (0, 0, V) \rangle \sim (1, 3, 1/3),$ $\langle \phi_4 \rangle^T = \langle (\phi_4^+, \phi_4^0, \phi_4^{'0}) \rangle = \langle (0, 0, v_4) \rangle \sim (1, 3, 1/3).$

with the hierarchy: $v_1 \sim v_2 \sim v_3 << V \sim$ a few TeV.

The anomaly free discrete Z_2 symmetry

 $Z_2(\phi_1, \phi_2, \phi_3, E_{lL}^+) = 1, \ Z_2(\phi_4, L_{lL}, l_L^+) = 0.$

(F. Yin, Phys. Rev. D75, 073010 (2007): discrete symmetry is A_4).

(2)

(3)

The charged lepton sector 1

• Experimental results

- Masses for ν_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

$$\mathcal{L}_{Y}^{l} = \sum_{\alpha=1,3,4} \sum_{l,l'=e,\mu,\tau} L_{lL} \phi_{\alpha}^{*} C(h_{ll'}^{E\alpha} E_{l'}^{+} + h_{ll'}^{e\alpha} l'^{+})_{L} + h.c.,$$

In the flavor basis $\vec{E}_6 = (e, \mu, \tau, E_e, E_\mu, E_\tau)$, with the discrete symmetry Z_2 enforced and $v_1 = v_2 = v_3 \equiv v \sim 10^2$ GeV

$$M^{e} = v \begin{pmatrix} 0 & 0 & 0 & h_{ee}^{E1} & h_{e\mu}^{E1} & h_{e\tau}^{E1} \\ 0 & 0 & 0 & h_{\mu e}^{E1} & h_{\mu\mu}^{E1} & h_{\mu\tau}^{E1} \\ 0 & 0 & 0 & h_{\tau e}^{E1} & h_{\tau\mu}^{E1} & h_{\tau\tau}^{E1} \\ h_{ee}^{e4} & h_{e\mu}^{e4} & h_{e\tau}^{e4} & h_{ee}^{e3}\delta^{-1} & h_{3e\mu}^{E3}\delta^{-1} & h_{e\tau}^{E3}\delta^{-1} \\ h_{\mu e}^{e4} & h_{\mu\mu}^{e4} & h_{\mu\tau}^{e4} & h_{\mu\sigma}^{E3}\delta^{-1} & h_{\mu\mu}^{E3}\delta^{-1} & h_{\mu\tau}^{E3}\delta^{-1} \\ h_{\tau e}^{e4} & h_{\tau\mu}^{e4} & h_{\tau\tau}^{e4} & h_{\tau e}^{E3}\delta^{-1} & h_{\tau\mu}^{E3}\delta^{-1} & h_{\mu\tau}^{E3}\delta^{-1} \end{pmatrix}$$

where $\delta = v/V$ is an expansion parameter.

• Experimental results

Electric Charge Operator
 Model with Exotic electrons

The charged lepton sector 1

• Charged lepton sector sector

• Masses for ν_L

Scalar sector

Neutrino masses 1

Neutrino masses 2
Neutrino masses 3

Perturbative analysis
 Numerical analysis
 CONCLUSIONS

3-3-1

2

Charged lepton sector sector 2

 $M_e M_e^{\dagger}$ for Yukawas of order one produce

- Three heavy leptons (masses of order V)
- The symmetry $e \leftrightarrow \mu \leftrightarrow \tau$ implies one see saw mass (for τ).
- $e \leftrightarrow \mu$ two see saw masses (for μ and τ).

• Without flavor symmetry: three see saw eigenvalues. PROGRAM: Two see saw eigenvalues for μ and τ and generate mass for e with a radiative mechanism.

Figure 1: Loop diagram for the electron mass.

Neutrino masses 1

Radiative Majorana masses use a new scalar triplet

$$\phi_5 = (\phi_5^{++}, \phi_5^{+}, \phi_5^{\prime+}) \sim (1, 3, 4/3)$$
, with $Z_2(\phi_5) = 0$ and $\langle \phi_5 \rangle = 0$.

- Experimental results
- Masses for ν_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1

(4)

• Charged lepton sector sector 2

Neutrino masses 1

- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

+
$$\phi_5^+(E_{lL}^-\nu_{l'L}-E_{l'L}^-\nu_{lL})+\phi_5'^+(\nu_{lL}l_L'^--\nu_{l'L}l_L^-)],$$

for $l \neq l' = e, \mu, \tau$. 3 parameters $h_{ll'}^{\nu}$ fixed by phenomenology.

Figure 2: Loop diagrams contributing to the radiative generation of Majorana masses for the neutrinos.

Neutrino masses 2

The lepton mass terms are

• Experimental results

- Masses for u_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

(5) $\mathcal{L}_m = \vec{\nu}_{Lf}^T M'^{\nu} C \vec{\nu}_{Lf} + \vec{E}_{6L}^T M_e'' C \vec{E}_{6L}^c + h.c.,$

 $\vec{\nu}_{Lf}^T$ and \vec{E}_6 are vectors in the flavor basis. $M'_{\nu} = (M_{\nu} + M_T^{\nu})/2$ is the symmetric 3×3 neutrino mass matrix constructed from the second order radiative corrections. M''_e is the 6×6 charged lepton mass matrix

Relations between the flavor states and the mass eigenstates are:

 $\vec{\nu}_{Lf} = U_{PMNS}\vec{\nu}_L,$

 U_{PMNS} is the 3×3 Pontecorvo-Maki-Nakagawa-Sakata lepton mixing matrix.

Experimental results
Masses for ν_L

Electric Charge Operator
Model with Exotic electrons

The charged lepton sector 1
Charged lepton sector sector

3-3-1

2

Scalar sector

Neutrino masses 1
Neutrino masses 2
Neutrino masses 3

Perturbative analysisNumerical analysis

CONCLUSIONS

Neutrino masses 3

The mass matrices are diagonalized by

$$U_{\nu}^{T} M_{\nu}^{\prime} U_{\nu} = M_{\nu}^{d}, \qquad U_{l} M_{e}^{\prime \prime} V_{l}^{\dagger} = M_{e}^{d},$$

$$M_{e}^{d} = Diag.(m_{e}, m_{\mu}, m_{\tau}, M_{E_{e}}, M_{E_{\mu}}, M_{E_{\tau}})$$
$$M_{\nu}^{d} = Diag.(m_{1}, m_{2}, m_{3})$$

 U_{ν} is a 3×3 rotation matrix and U_l and V_l are two 6×6 rotation matrices

(6) $U_{PMNS} = U_{3l}^{\dagger} U_{\nu},$

where U_{3l} is the 3×3 upper left submatrix of U_l .

 U_{PMNS} is not unitary (differs from unitary by terms proportional to $\delta^2 \sim 10^{-4}$).

Perturbative analysis

- Experimental results
- Masses for ν_L
- 3-3-1
- Electric Charge Operator

(7)

- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

$$U_{3l}^{0} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6}\\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix},$$

The tribimaximal mixing matrix which is unitary.

$$U_{PMNS}^{0} = U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})I_{\phi},$$

 U_{ij} are rotation matrices in the ij plane by the angle θ_{ij} and δ and I_{ϕ} are Dirac and Majorana CP violating phases.

$$\theta_{23} = \theta_{atm}, \ \theta_{12} = \theta_{sol} \text{ and } \theta_{13} = \theta_{chooz}.$$

Numerical analysis

• Experimental results

- ullet Masses for u_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
 2
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

Perform a random numerical analysis to fix $h_{ll'}^{\nu}$. with $h_{ll'}^{\nu}$ (for $0.05 \le h_{ll'}^{\nu} \le 1.0$) The experimental results are reproduced, up to 3σ deviations, for

 $h^{\nu}_{e\mu} \approx h^{\nu}_{\mu\tau} \approx h^{\nu}_{e\tau} \approx 0.1$

With inverted hierarchy. and neutrino masses predicted as:

• $m_{\nu_1} = 0.0491 \pm 0.0001$ eV.

- $m_{\nu_2} = 0.0483 \pm 0.0001$ eV.
- $m_{\nu_3} = 0.0016278 \pm 3 \times 10^{-7}$ eV.

CONCLUSIONS

• Experimental results

- \bullet Masses for ν_L
- 3-3-1
- Electric Charge Operator
- Model with Exotic electrons
- Scalar sector
- The charged lepton sector 1
- Charged lepton sector sector
- Neutrino masses 1
- Neutrino masses 2
- Neutrino masses 3
- Perturbative analysis
- Numerical analysis
- CONCLUSIONS

The neutrino mixing angles and mass differences were reproduced in the context of this 3-3-1 model with:

ALL THE YUKAWA C.C. OF ORDER 0.1

WITH NEAT PREDICTIONS FOR THE NEUTRINO MASSES.