Charmless Hadronic B Decays at BaBar

Woochun Park University of South Carolina

Representing the BaBar Collaboration

PHENO '07 @Univ of Wisconsin May 7, 2007

Introduction to Charmless Decays

- Dominated by SM-suppressed b \rightarrow u tree amplitudes. Also, transitions involving b \rightarrow s and b \rightarrow d penguin amplitudes.
 - Small branching fractions, ~10⁻⁶ in Standard Model
 - Virtual loops sensitive to new physics contributions.
- Important probes of the CKM mechanism (α , β , and γ)
- Rich program at the B factories
 - Branching fractions and CP asymmetry measurements
 - Polarization measurements in vector-vector and vector-tensor modes.

Overview of This Talk

- Vector-Vector and Vector-Tensor modes
 - BR's, CP asymmetries, and polarization measurements
 - $B^0 \rightarrow \phi K^*(892)^0$ and $\phi K^*_2 (1430)^0$ [PRL 98 051801(2007)]
 - Search for B⁰→φ (Kπ)* with large Kπ invariant mass [arXiv:0705.0398 [hep-ex]]
 - B→K^{*}ρ [PRL **97** 201801 (2006)]
- Search for $B^0 \rightarrow K_1(1270)^+ \pi^-$ and $B^0 \rightarrow K_1(1400)^+ \pi^-$ [Preliminary Result]
- Direct CP violation in B⁰→K⁺π⁻
 [hep-ex/0703016]

α **angle** : See Marc Escalier's talk β **angle**: See Roberto Covarelli's talk

BaBar Dataset and Detector

- Need large data samples to probe BF~10⁻⁶
 - > 420 fb⁻¹ delivered.
 - 223M or 384M B pair samples used for analyses presented here.
- BaBar Detector for Charmless
 B decay analyses
 - Good neutral energy resolution
 - Charged K/ π separation more than 2σ with Cherenkov angle + dE/dx .

Analysis Method

- Perform maximum likelihood fit
 - Kinematic variables: beam energy substitute mass (m_{ES}), ∆E and resonance invariant masses
 - Event-shape variables to distinguish from continuum event
 - Fit for Branching fraction, CP asymmetries, and polarization parameters.

Charmless Hadronic B decays at BaBar

$B \rightarrow VV$ Decays : Helicity Amplitude and Angular analysis

- Full amplitude analysis can be simplified to separate longitudinal and transverse events with low statistics and measure:
 - Longitudinal polarization fraction f_L

$$f_{L} = \frac{|A_{0}|^{2}}{|A_{0}|^{2} + |A_{+1}|^{2} + |A_{-1}|^{2}}$$

• Analogous to $H \rightarrow ZZ \rightarrow |+|-|+|- @ LHC$.

$$\frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\Phi} \propto |\sum_{|m|\leq J_{1},J_{2}}A_{m}\times Y_{J_{1},m}(\theta_{1},0)\times Y_{J_{2},-m}(\pi-\theta_{2},-\Phi)|^{2}$$

$$\propto \begin{cases} \frac{1}{4}\sin^{2}\theta_{1}\sin^{2}\theta_{2}(|A_{+1}|^{2}+|A_{-1}|^{2})+\cos^{2}\theta_{1}\cos^{2}\theta_{2}|A_{0}|^{2}\\ +\frac{1}{2}\sin^{2}\theta_{1}\sin^{2}\theta_{2}[\cos 2\Phi\Re(A_{+1}A_{-1}^{*})-\sin 2\Phi\Im(A_{+1}A_{-1}^{*})]\\ +\frac{1}{4}\sin 2\theta_{1}\sin 2\theta_{2}[\cos\Phi\Re(A_{+1}A_{0}^{*}+A_{-1}A_{0}^{*})-\sin\Phi\Im(A_{+1}A_{0}^{*}-A_{-1}A_{0}^{*}) \end{cases}$$

Integrate over
$$\Phi$$

 $\frac{dN}{d\cos\theta_1 d\cos\theta_2} = f_L \times (\cos\theta_1 \cos\theta_2)^2 + (1 - f_L) \times \frac{1}{4} (\sin\theta_1 \sin\theta_2)^2$

Expectation of f_L

Standard Model: left-handed quarks and spin flip suppression:

- We expect longitudinally polarized decays to dominate:
 - Confirmed ($f_L \sim 0.82-0.98$) in $B \rightarrow \rho \omega$, $\rho \rho$ (tree-dominated).
 - We investigate penguin-dominated VV and VT decays.
- Other amplitudes could decrease f_L:
 - SM: annihilation contribution, re-scattering effect, magnetic penguin, small B→K* form factor.....
 - NP: Right-handed supersymmetric mass insertions, tensor Z",...

Previous VV results

	f _L
$\omega \rho^+$	0.82±0.11
$\rho^+ \rho^0$	0.91±0.05
$\rho^0 \rho^0$	0.86±0.13
$\rho^+\rho^-$	0.97±0.02

$B^{0} \rightarrow \phi K^{*}(892)^{0}$ and $B^{0} \rightarrow \phi K^{*}_{2}(1430)^{0}$ 384M BB PRL 98 051801(2007)

Energy Physics Grou

Full amplitude analysis

Mode	$\mathcal{S}\left(\sigma\right)$	$\mathcal{B}~(10^{-6})$	\mathcal{A}_{CP}
$\phi K^* (892)^0$	21.0	$9.2\pm0.7\pm0.6$	$-0.03 \pm 0.07 \pm 0.03$
$\phi K_2^* (1430)^0$	9.7	$7.8\pm1.1\pm0.6$	$-0.12 \pm 0.14 \pm 0.04$
$\phi(K\pi)_0^{*0}$	9.8	$5.0\pm0.8\pm0.3$	$+0.17 \pm 0.15 \pm 0.03$
$\phi K_0^* (1430)^0$		$4.6\pm0.7\pm0.6$	

- $B^0 \to \phi K_2^* (1430)^0 \qquad B^0 \to \phi K^* (892)^0$
- $\begin{aligned} f_L & 0.853^{+0.061}_{-0.069} \pm 0.036 & 0.506 \pm 0.040 \pm 0.015 \\ f_{\perp} & 0.045^{+0.049}_{-0.040} \pm 0.013 & 0.227 \pm 0.038 \pm 0.013 \\ \delta_0 & 3.54^{+0.12}_{-0.14} \pm 0.06 & 2.78 \pm 0.17 \pm 0.09 \end{aligned}$

 $\delta_0 \propto arg(\frac{A_{\text{S-Wave}}}{A_0})$

While VT shows large f_L values, VV shows f_L ~0.5. (puzzle!!)

$$B^{0} \rightarrow \phi K^{*}(892)^{0} \text{ and } B^{0} \rightarrow \phi K^{*}_{2}(1430)^{0} \quad 384 \text{M BB PRL 98 051801(2007)}$$

$$\phi_{\parallel} \qquad B^{0} \rightarrow \phi K^{*}(892)^{0} \qquad B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0} \\ 2.31 \pm 0.14 \pm 0.08 \\ 2.24 \pm 0.15 \pm 0.09 \qquad 2.90 \pm 0.39 \pm 0.06 \\ 5.72^{+0.55}_{-0.87} \pm 0.11 \qquad \phi_{\parallel} = \arg(\frac{A_{\parallel}}{A_{0}}) \quad \phi_{\perp} = \arg(\frac{A_{\parallel}}{A_{0}})$$

$$\phi_{\parallel} \text{ and } \phi_{\perp} \text{ away from either } \pi \text{ or zero.}$$
Indicating the presence of final state interactions for VV and VT.
$$VV \qquad \phi_{\parallel} \simeq \phi_{\perp} \qquad |A_{0}| \simeq |A_{\pm 1}| \gg |A_{-1}| \qquad \text{in VV ambiguity resolved} \\ A_{\parallel} = \frac{A_{\pm 1} + A_{-1}}{\sqrt{2}} \qquad |A_{0}| \simeq |A_{\pm 1}| \gg |A_{-1}| \qquad \text{in VV ambiguity resolved} \\ A_{\parallel} = \frac{A_{\pm 1} + A_{-1}}{\sqrt{2}} \qquad While similar presence of FSI, still f_{L}(VV) \neq f_{L}(VT) \text{ (puzzle)} \\ \text{ Indication of a new physics contribution???}$$

 $B^+ \rightarrow \phi K^*(892)^+$ analysis will be ready in FPCP'07.

Search for ϕ (K π)*⁰ with large K π invariant mass 384 M BB arXiv:0705.0398 [hep-ex]

- However, B→ \(\phi D^0\) is highly suppressed in the SM.
- As a first measurement, we report several BF upper limits.
- D^o mass peak is predominantly due to f(980)^oD^o and continuum.

B 20 B 20 0 0 -0.1	ο ΔE(GeV)	a) 0.1 b 20 c 10 0.1 c 0.1 c 0.1	(b) 5.27 5.29 m _{ES} (GeV)
Events 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20 Wex 20	(α 1.875 m _{Kπ} (GeV)	2.15	(d) 1 1.02 1.04 m _{KK} (GeV)
Mode	$\mathcal{S}(\sigma)$	$\mathcal{B}(10^{-6})$	\mathcal{B} UL (10^{-6})
$ \phi K^* (1680)^0 \phi K^*_3 (1780)^0 \phi K^*_4 (2045)^0 \phi (K\pi)^{*0}_0 \phi \overline{D}^0 $	$0.6 \\ 0.0 \\ 1.2 \\ 2.2 \\ 2.4$	$\begin{array}{c} 0.7^{+1.0}_{-0.7} \pm 1.1 \\ -0.9 \pm 1.4 \pm 1. \\ 6.0^{+4.8}_{-4.0} \pm 4.1 \\ 1.1 \pm 0.4 \pm 0.3 \\ 6.5^{+3.1}_{-2.7} \pm 1.4 \end{array}$	$\begin{array}{ccc} & 3.5 \\ 1 & 2.7 \\ & 15.3 \\ 3 & 1.7 \\ & 11.6 \end{array}$

B→K(892)*p 232M BB PRL 97 201801 (2006)

- The puzzle could be resolved by studying two other VV modes: K*(892)⁰p⁺ and K*(892)⁰p⁰
- As in the K(892)* ϕ mode, it is critical to understand the non-resonant background in these analyses such as $f_0(980)K^{*+}$.

20F

15

ρ⁰**Κ***+

Events / 35.5 MeV

100

50

0.8

ρ+**Κ*0**

1.2

 $m_{K^+\pi}^{-}$ (GeV)

1.4

100

Mode	n_{sig}	$\varepsilon(\%)$	$\prod \mathcal{B}_i(\%)$	$S(\sigma)$	$\mathcal{B}(10^{-6})$	f_L	$\mathcal{A}_{ ext{CP}}$
$\rho^0 K^{*+}$				2.5	$3.6^{+1.7}_{-1.6} \pm 0.8 \ (6.1)$	$[0.9 \pm 0.2]$	
$\rightarrow \rho^0 K^* {}^+_{K^+ \pi^0}$	19^{+16}_{-15}	7.9	32.9	1.3	$3.2^{+2.7}_{-2.4} \pm 0.9$	$[0.8^{+0.3}_{-0.5}]$	
$\rightarrow \rho^0 K^{*+}_{K^0_S \pi^+}$	32^{+19}_{-17}	15.8	22.9	2.1	$3.8^{+2.2}_{-2.1} \pm 0.9$	$[1.0 \pm 0.3]$	_
$\rho^+ K^{*0}$	194 ± 29	13.5	66.7	7.1	$9.6 \pm 1.7 \pm 1.5$	$0.52 \pm 0.10 \pm 0.04$	$-0.01 \pm 0.16 \pm 0.02$
$\rho^{-}K^{*}_{K^{+}\pi^{0}}$	60^{+25}_{-22}	15.2	32.5	1.6	$5.4^{+3.8}_{-3.4} \pm 1.6 \ (12.0)$	$\left[-0.18^{+0.52}_{-1.74}\right]$	—
$\rho^{0}K^{*0}$	185 ± 30	22.9	66.7	5.3	$5.6 \pm 0.9 \pm 1.3$	$0.57 \pm 0.09 \pm 0.08$	$0.09 \pm 0.19 \pm 0.02$
$f_0(980)K^{*+}$				5.0	$5.2 \pm 1.2 \pm 0.5$	—	$-0.34 \pm 0.21 \pm 0.03$
$\rightarrow f_0(980) K^*{}^+_{K^+\pi^0}$	40^{+13}_{-12}	8.5	32.9	3.8	$6.2^{+2.1}_{-1.9} \pm 0.7$	_	$-0.50 \pm 0.29 \pm 0.03$
$\rightarrow f_0(980) K^{*\mp}_{K^0_S \pi^+}$	37^{+14}_{-12}	16.6	22.9	3.2	$4.2^{+1.5}_{-1.4} \pm 0.5$	—	$-0.13 \pm 0.30 \pm 0.01$
$f_0(980)K^{*0}$	83 ± 19	21.7	66.7	3.5	$2.6 \pm 0.6 \pm 0.9 \ (4.3)$		$-0.17 \pm 0.28 \pm 0.02$

- CKM angle α_{eff}=(78.6±7.3)° measured by time-dependent CP fit of B⁰→a₁⁺π⁻ @BaBar PRL 98 181803 (2007).
- To bound $|\Delta \alpha|$ using flavor SU(3) symmetry, we need to measure BF(B \rightarrow K₁ π) $|\alpha - \alpha_{\text{eff}}| \le \frac{1}{2}(|\alpha - \alpha_{\text{eff}}^+| + |\alpha - \alpha_{\text{eff}}^-|).$

$$\frac{\alpha - \alpha_{\rm eff}}{|\Delta| \leq \frac{1}{2}(|\alpha - \alpha_{\rm eff}| + \frac{1}{2})}$$

depends on
BF(B \rightarrow K_1 \pi)

BF(B→a₁K)

depends on

[Gronau & Zupan, Phys. Rev. D73, 057502 (2006)]

BF is also a test of factorization.

USCHED University of South Carolina High Energy Physics Group

Direct CP violation in $B \rightarrow K^+\pi^-$

- Clear Direct CP violation signature
 - While background level is similar in sideband region, number of signal events is different.
- Updated with 384M B pairs [hepex/0703016].
 - n(K⁺π[−]) = 4372 ± 82
 - 5.5 significance to exclude CPconserving hypothesis.

$$\mathcal{A}_{K\pi} = -0.107 \pm 0.018 \,(\text{stat})^{+0.007}_{-0.004} \,(\text{syst})$$

 f₁ measurements have been done in VV and VT decays and it's a puzzle.

	f _L
φ Κ*(892) +	0.49±0.06
φ Κ*(892) ⁰	0.51±0.05
ρ+ Κ*(892) ⁰	0.52±0.11
ρ⁰ Κ*(892) ⁰	0.57±0.13
φK [*] ₂ (1430) ⁰	0.85±0.07

- New BF upper limits on
 - $K_1(1270)^+ \pi^-$ and $K_1(1400)^+ \pi^-$
- Direct CP violation becomes more significant 5.5 σ with updated $B^0 \rightarrow K^+\pi^-$ analysis.

Polarizations of Charmless Decays

