Unified TeV Scale Picture of Dark Matter and Baryogenesis

K.S. Babu Oklahoma State Univeristy PHENO 2007

K.S. Babu, S. Nasri, R.N. Mohapatra, Phys. Rev. Lett. 98, 161301 (2007)

K.S. Babu

Pheno 2007, Madison, WI

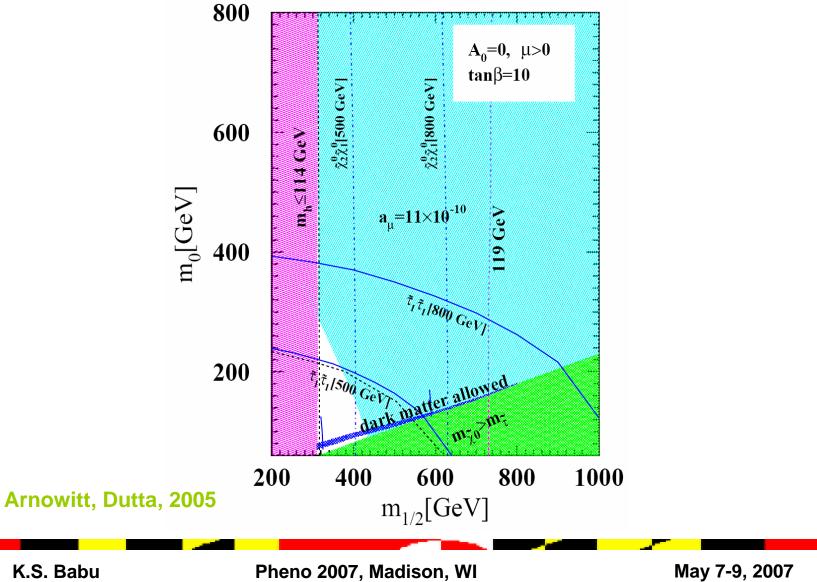
May 7-9, 2007

Current Thinking

- Dark matter is either the lightest SUSY particle, or the axion, or the lightest Kaluza-Klein mode of large extra dimensional models
- Matter-antimatter asymmetry has a different source -- from right handed neutrino decay in seesaw models for neutrinos utilizing sphalerons
- Unrelated physics

Dark matter issues in MSSM

• Getting dark matter to fit into MSSM requires some fine tuning:


(i) Either Bino-Higgsino mixing must be finetuned to get the right relic density

or

(ii) Co-annihilation needed where stau and neutralino LSP are nearly degenerate (within ~ 20 GeV): requires adjustment of m_0^2

Dark Matter Constraints on MSSM

K.S. Babu

Yet SUSY has its own appeal

- It stabilizes the weak scale against radiative corrections
- It leads to unification of gauge couplings
- Is there an extension of MSSM that preserves these good features, broadens the parameter space of MSSM and gives a unified picture of dark matter, origin of matter and neutrino masses?

Neutrino mass extension of MSSM

- Add three right handed neutrinos with heavy Majorana masses
- New superpotential:

$$W_{\nu} = W_{MSSM} + h_{\nu}LH_uN + \frac{1}{2}M_RNN$$

• Leads to seesaw formula for neutrino masses:

$$M_{\nu} = -\frac{m_D^2}{M_R}$$

 N decay via leptogenesis leads to baryon asymmetry

Two points about this model:

- Neutrino observations do not require three RH neutrinos -- two are enough. (the so-called 3 x 2 seesaw)
- SUSY seesaw models for leptogenesis have some problems!

Issues with leptogenesis models

 In typical scenarios, often the lightest RH neutrino masses are higher than the reheat temperature after inflation coming from gravitino abundanceposing a problem.

Davidson, Ibarra have a lower bound on $M_R \ge 10^9$ GeV; also true in many interesting SO(10) models

The upper bound on T-reheat for generic TeV scale gravitinos is $T_R \leq 10^7$ GeV (Kohri, Mori, Yotsuyanagi)

New Model

- Could it be that only two of the RH neutrinos are heavy and the third one is very light (i.e. TeV scale)
- We show that
- (i) such a model can naturally arise from a simple symmetry
- (ii) In this case, one can have a unified TeV scale model for baryogenesis, neutrino masses and dark matter

New proposal: VXMSSM

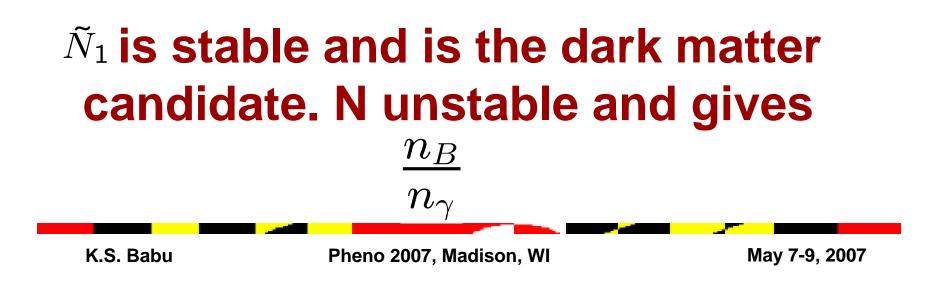
- 3 x 2 seesaw model with the third RH neutrino in the TeV scale and decoupled from the neutrino sector
- Plus a pair of color triplets: X, \overline{X} with couplings:

$$W_{new} = \lambda_i N u_i^c X + \lambda_{ij}' d_i^c d_j^c \overline{X} + \frac{M_N}{2} N N + M_X X \overline{X}$$

Impose R-parity symmetry as in MSSM. This simple extension provides a remarkably natural model for dark matter, neutrinos and baryogenesis and has testable predictions !!

Grand unification of this model

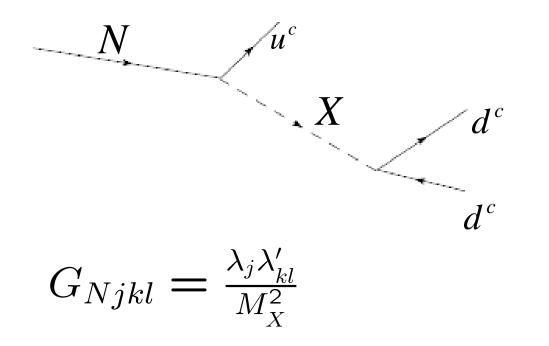
- If X, \overline{X} belong to full SU(5) multiplets 10 and 10-bar, coupling unification unaffected
- Only the unified value of the GUT coupling changes
 - Couplings motivated by SO(10) GUT: part of 120 Higgs and 16 .16. 120 coupling leads to our interactions
 - Discrete symmetry guarantees the third RH N decoupling naturally (see later)



Baryogenesis and Dark Matter

Mass ordering among particles:

 $M_{X,\overline{X}} \sim {\rm TeV}, \quad M_{\rm squarks, \ sleptons} > M_{N,\tilde{N}} \sim {\rm 100 \ GeV}$


mSUGRA boundary conditions imply that $M_{\tilde{N}_1} \leq M_N, \ M_{\tilde{N}_2}$ Where $\tilde{N}_{1,2}$ are the real and imaginary parts of \tilde{N}

Decay mode of N-fermion

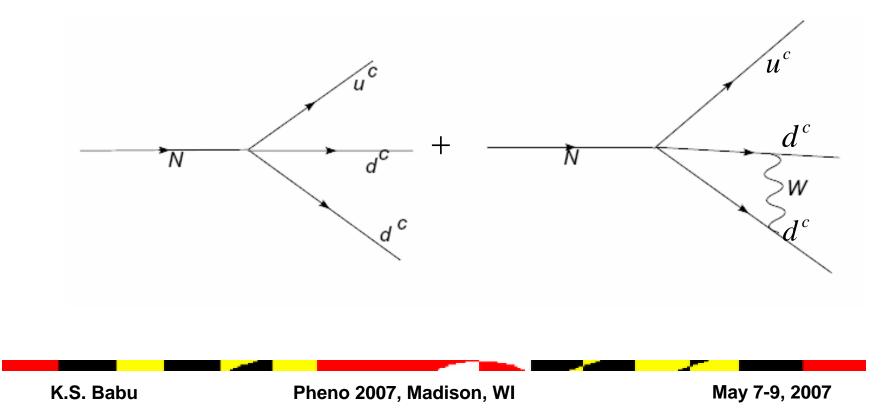
• X-exchange gives a decay

 $N \rightarrow u^{c} d^{c} d^{c}$ + anti-quark mode

K.S. Babu Pheno 2007, Madison, WI May 7-9, 2007

Post Sphaleron Baryogenesis

- Babu, Mohapatra, Nasri, Phys Rev. Lett. 97, 131301 (2006)
- Out of equilibrium condition (one of three Sakharov conditions) satisfied at:


$$\Gamma_{N
ightarrow u^c d^c d^c} \leq \sqrt{g*} rac{T^2}{M_{\mathsf{Pl}}}$$

$$\Gamma_N = \frac{C}{128} \frac{(\lambda^{\dagger} \lambda) \operatorname{Tr}[\lambda'^{\dagger} \lambda')]}{192\pi^3} \sin^2 2\theta M_N^5 \left(\frac{1}{M_{X_1}^2} - \frac{1}{M_{X_2}^2}\right)^2$$

For $[\lambda^{\dagger}\lambda \text{Tr}(\lambda'^{\dagger}\lambda')]^{1/2} \simeq 10^{-4}$, N goes out of equilibrium below its mass and is ready to generate baryons via its CP and baryon violating decay

Baryogenesis Diagrams

 N decay to 3 quarks and anti-quarks are different due to CKM CP violation and interference between tree and one loop diagrams: (no sphalerons needed)

Estimate of \mathcal{E}_B

Dominant contribution is from Wexchange and is:

$$\varepsilon_{B} \cong -\frac{\alpha_{2}}{4} \frac{m_{c}m_{b}\lambda_{23}^{\prime}\lambda_{21}^{\prime}V_{ub}\sin\delta}{M_{W}^{2}|\lambda_{22}^{\prime}|^{2}|}$$

Gives:
$$\varepsilon_B \cong 3 \times 10^{-8} \frac{\lambda'_{21} \lambda'_{23}}{|\lambda'_{22}|^2}$$

\widetilde{N}_1 As Scalar dark matter

Relic density: Annihilation channel

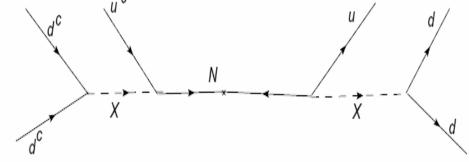
$$\widetilde{N}_1 \widetilde{N}_1 \longrightarrow u^c \overline{u}^c$$

Cross section:

$$\sigma v \approx \frac{1}{8\pi} (\lambda^+ \lambda)^2 \frac{|\vec{p}|^2}{M_X^4}$$

For reasonable choice of parameters, cross section is of order of a 0.1 - 1 pb and gives the right relic density.

Direct detection of dark matter


$$\sigma_{\tilde{N}_1+p} \simeq \frac{|\lambda_1|^4 m_p^2}{64\pi M_X^4} \left(\frac{A+Z}{A}\right)^2$$

Cross section about 10^(- 45) cm²⁻ In the observable range.

A crucial experimental test

 N-N-bar oscillation: Diagram involves Majorana N exchange

- Effective strength: $G_{\Delta B=2} \cong \frac{\lambda_1 \lambda_{12}'}{M^4 _X M_N}$ $O = u^c d^c s^c u^c d^c s^c$
- Will lead to N-N-bar osc via the s-content in neutron.
- Transition time expected to be around 10^8 sec.

Present expt situation in N-N-bar Osc.

Range accessible to current reactor fluxes:

$$\tau_{n-\overline{n}} \sim 10^8 - 10^{11} \,\mathrm{sec}$$
.

Present limit: ILL experiment: Baldoceolin et al. (1994) $> 10^8$

$$\tau_{n-\overline{n}} \ge 10^8 \text{ sec.}$$

New proposal by Y. Kamyshkov et al for an expt at

$$10^{10} - 10^{11}$$
 sec.

Tests at LHC--New signatures

(i) Monojet + missing energy signals from Xproduction in pp collision.

$$\overline{q} + \overline{q} \to X \to \overline{q} + N$$

(Missing energy is N)

Symmetry giving this model

Consider Seesaw model for neutrinos invariant under a $Z^{R}_{2,\mu-\tau}$ that exchanges only $N_{\mu} - N_{\tau}$

RH neutrino field $N_{-} = \frac{1}{\sqrt{2}}(N_{\mu} - N_{\tau})$ decouples from seesaw formula which now becomes a 3 x 2 seesaw involving N_{e} and $N_{+} = \frac{1}{\sqrt{2}}(N_{\mu} + N_{\tau})$.

Our singlet field then is N= $N_{-} = \frac{1}{\sqrt{2}}(N_{\mu} - N_{\tau})$ N mass can be chosen in the 100 GeV range without affecting neutrino masses or other low energy observations !!

Tests in neutrino mixings

- 3 x 2 seesaw with 2 RH neutrinos:
- For normal hierarchy, it necessarily predicts nonzero θ_{13} and of order $\sqrt{\frac{\Delta m^2_{atm}}{\Lambda m^2_{solar}}}$; hence testable.
 - Inverted hierarchy if θ_{13} is close to zero.

Conclusion

- A simple extension of MSSM that gives a unified TeV picture of dark matter and baryogenesis. Less fine tuned than MSSM. Embeddable into a seesaw model for neutrinos.
- Opens up MSSM parameter space.
- SUSY phenomenology (e.g. LHC signal) very different from MSSM.
- Crucial test is Neutron-anti-neutron osc time in the observable range.