Soft Leptogenesis in Warped Extra Dimensions

Anibal D. Medina

Department of Astronomy and Astrophysics The University of Chicago and Argonne National Laboratory Work done in collaboration with Carlos Wagner, JHEP 0612:037,2006/ hep-ph/0609052

Outline of the talk

- Elements of Baryogenesis
- Brief introduction to the Geometry of Warped Extra Dimensions (RS1).
- Brief summary of Soft Leptogenesis.
- The Model
- Numerical results
- Conclusions

Baryogenesis

• In nature we see antimatter mainly in cosmic rays, e.g. $\bar{p}_{\rm e}$

$$\frac{\bar{p}}{p} \sim 10^{-4}$$

- We can characterize the asymmetry between and antimatter in terms of the baryon-to-photon ratio, ($n_{\gamma} \equiv \frac{\zeta(3)}{\pi^2}g_*T^3$) $\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$
- At early times the entropy density s is a better quantity to compare

$$\frac{n_B - n_{\bar{B}}}{s} = \frac{1}{7.04} \,\eta$$

- Sakharov conditions for dynamic creation of baryon asymmetry
- 1. B violation
- 2. Loss of thermal equilibrium
- 3. C, CP violation

Warped Extra Dimensions (RS1)

• Non-factorizable geometry with one extra dimension y compactified on an orbifold S^1/Z_2 of radius R, $0 \le y \le \pi$.

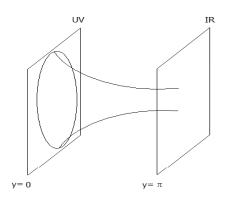
$$ds^2 = e^{-2R\sigma} \eta_{\mu\nu} dx^\mu dx^\nu + R^2 dy^2$$

where $\sigma = k|y|$. Slice of AdS₅ geometry. Mass scale at y=0, M_P and at y= π , M_pe^{-k π R}.

• Promote R to a superfield \rightarrow 4D chiral radion T.

$$T = R + iB_5 + \theta \Psi_R^5 + \theta^2 F_T$$

• Geometry diagram



Soft Leptogenesis

• One-generation model

• Superpotential W=(M₄NN)/2+ λ_4 LNH, where N, L and H stand for r.h. neutrino, lepton doublet and up-type Higgs chiral superfields.

•Width $\Gamma = M_4 |\lambda_4|^2 / 4\pi$

•Soft SUSY breaking relevant terms $-\mathcal{L}_{soft,4D} = \ldots + A_4 \lambda_4 \tilde{\nu}_R \tilde{\nu}_H + \frac{1}{2} B_4 M_4 \tilde{\nu}_R(x) \tilde{\nu}_R(x) + \ldots$

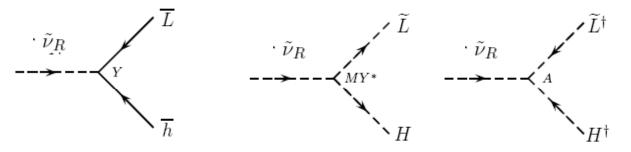
•One physical CP violating phase $\phi = \arg(A_4B_4^*)$

•Soft SUSY breaking terms induce mixing (oscillation) between r.h sneutrino and r.h. anti-sneutrino in a similar fashion to the $B^0-\underline{B}^0$ and $K^0-\underline{K}^0$ systems.

•Mass and width difference $\Delta m = |B_4|$, $\Delta \Gamma_4 = 2|A_4|\Gamma_4/M_4 \rightarrow \text{significant CP violation in sneutrino decay processes.}$

Soft Leptogenesis

• Two-body decay diagram for r.h. sneutrino.



Tree level Feynman diagrams for r.h. sneutrino decay

• CP violation in the mixing generates lepton-number asymmetry in the final states of the r.h sneutrino decay:

$$\epsilon_L \simeq \frac{4\Gamma B_4}{4B_4^2 + \Gamma^2} \frac{ImA_4}{M_4} \Delta_{\rm BF}$$

where $\Delta_{BF} = (c_B - c_F)/(c_B + c_F)$, where c_B and c_F represent the phase space of fermionic and bosonic channels, final states $f = h\nu$ and $f = H\tilde{\nu}$ respectively, $\Delta_{BF} \approx 0.8$ for $T = 1.2M_4$.

The Model: Right handed neutrino field interactions

• Set up: Quarks, Leptons and Higgs superfields on the UV brane (y=0), Gauge and right handed neutrino superfields in the bulk. SUSY conserving on the UV brane and bulk and SUSY breaking on the IR brane (y= π).

• 5D action for r.h. neutrino superfield N^c,

$$\begin{split} \mathcal{S}_{5} &= \int d^{5}x \left(\int d^{4}\theta \frac{1}{2} (T+T^{\dagger}) e^{-(T+T^{\dagger})\sigma} (N^{\dagger}N+N^{c}N^{c\dagger}) + \right. \\ &+ \int d^{2}\theta e^{-3T\sigma} N^{c} \left[\partial_{5} - (\frac{3}{2} - c_{\nu_{R}})T\sigma' \right] N + h.c. + \\ &+ \frac{1}{2} \int d^{2}\theta e^{-3T\sigma} N^{c} (-M_{1}T) N^{c} \delta(y) + h.c. + \\ &- \frac{1}{2} \int d^{2}\theta e^{-3T\sigma} N^{c} (-M_{2}T) N^{c} \delta(y-\pi) + h.c. + \\ &- \int d^{2}\theta e^{-3T\sigma} \lambda L N^{c} H T \delta(y) + h.c. \Big) \end{split}$$

where M_1 and M_2 are 5D Majorana masses, λ is the Yukawa coupling in 5D and we parameterized the hypermultiplet mass as $c\sigma'$.

The Model: Radion F-term

 \bullet F_{T} responsible for SUSY breaking $% F_{T}$ comes from

$$\mathcal{L}_{4D} = -\frac{6M_5^3}{k} \int d^4\theta \phi^{\dagger} \phi (1 - e^{-(T+T^{\dagger})k\pi}) + \int d^2\theta \phi^3 [W_0 + e^{-3Tk\pi}W] + h.c$$

where W and W₀ are constant superpotentials at the orbifold positions y=0 and y= π , ϕ is the compensator field. Here $M_P^2 = M_5^3(1 - e^{-2k\pi R})/k$.

 \bullet Zero cosmological constant in 4D theory \rightarrow

$$|W_0|^2 = e^{-4k\pi R}|W|^2$$

 $\therefore \text{ Since } F_T = e^{-Rk\pi} \frac{W}{2\pi M_5^3} + \frac{W_0}{2\pi M_5^3} \rightarrow \mathsf{F}_{\mathsf{T}} \text{ localized on IR brane with 4D form}$

$$F_T = e^{-k\pi R} \frac{W}{2\pi M_5^3}$$

The Model: Gaugino mass generation

Action for vector supermultiplet

$$\mathcal{S}_5 = \int d^5 x \left[\frac{1}{4g_5^2} \int d^2 \theta T W^{\alpha} W_{\alpha} + h.c + \ldots\right]$$

• Induced gaugino mass term (universal gaugino masses)

$$\mathcal{L}_{soft} = \frac{\delta(y-\pi)e^{-k\pi R}W\lambda_1\lambda_1}{RM_5^3} + h.c$$

•Solutions to the Eqn. of motion satisfying boundary conditions yield

$$\det \begin{pmatrix} J_0(x_n) & Y_0(x_n) \\ J_0(x_n e^{k\pi R}) - \frac{W}{4M_5^3} J_1(x_n e^{k\pi R}) & Y_0(x_n e^{k\pi R}) - \frac{W}{4M_5^3} Y_1(x_n e^{k\pi R}) \end{pmatrix}$$

where $x_n = m_n/k$. In the case $\eta = W/4M_5^3 \ll 1$ and $x_n e^{kR} \ll 1$ we find

$$m_{\lambda,0} \approx -\frac{\eta}{\pi R} e^{-k\pi R}$$

<u>The Model: zero-mode Lagrangian</u> <u>for r.h. sneutrinos</u>

• Auxiliary fields for N^c and N

$$F_{N^c}^{\dagger} = -\frac{e^{-R\sigma}}{R} \left(\left[\partial_5 - \left(\frac{3}{2} - c_{\nu_R}\right) R\sigma' \right] \tilde{N} - M_1 R \tilde{\nu}_R \delta(y) + \right. \\ \left. -M_2 R \tilde{\nu}_R \delta(y - \pi) - \lambda \tilde{\nu} H R \delta(y) \right) - \frac{1}{2R} \tilde{\nu}_R^* F_T (1 - 2R\sigma) \right]$$

$$F_N^{\dagger} = \frac{e^{-R\sigma}}{R} \left[\partial_5 - \left(\frac{3}{2} + c_{\nu_R}\right) R\sigma' \right] \tilde{\nu}_R - \frac{1}{2R} \tilde{N}^* F_T (1 - 2R\sigma)$$

• Now replacing, integrating over superspace, the zero-mode Lagrangian for $\tilde{\nu}_R$ and \tilde{N} is

$$\begin{aligned} \mathcal{L}_{5D,0} &= \sqrt{-g} (-|\partial_M \tilde{N}|^2 - |\partial_M \tilde{\nu}_R|^2 - M_1^2 \tilde{\nu}_R \tilde{\nu}_R^* \delta(y)^2 + \\ &-\lambda \lambda^* \tilde{\nu} \tilde{\nu}^* H H^* \delta(y)^2 - M_1 \tilde{\nu}_R^* \lambda \tilde{\nu} H \delta(y)^2 + h.c. + \\ &+ \frac{e^{2R\sigma}}{2R} (2R\sigma - 2) F_T F_T \sigma (\tilde{\nu}_R \tilde{\nu}_R^* + \tilde{N} \tilde{N}^*) - M_2^2 \tilde{\nu}_R \tilde{\nu}_R^* \delta(y - \pi)^2 + \\ &+ \frac{1}{2} M_2 \sigma e^{\sigma R} F_T \tilde{\nu}_R \tilde{\nu}_R \delta(y - \pi) + h.c.) \end{aligned}$$

Nor A-term, neither B-term can be formed in the UV brane.

The Model: Effective Yukawa coupling

• $\tilde{\nu}_R$ zero-mode satisfies $[\partial_5 - (3/2 + c_{\nu_R})T\sigma']g^{(0)} = 0$ whose solution is $g^{(0)} = e^{(3/2 + c_{\nu_R})T\sigma}/N_0$ with $1 - 2(1/2 + c_{\nu_R})k$

$$\frac{1}{N_0^2} = \frac{2(1/2 + c_{\nu_R})k}{e^{2(1/2 + c_{\nu_R})k\pi R} - 1}$$

- For modes stuck on UV brane $N_{0,s} = 1/\sqrt{R}$
- Fermionic terms in Yukawa interaction

$$\mathcal{L}_{\text{Yukawa}} \simeq \lambda R(\nu \nu_R H + \nu_R h \tilde{\nu} + h \nu \tilde{\nu}_R) + h.c.$$

• Canonically normalizing

$$\mathcal{L}_{\text{Yukawa}} \simeq \frac{\lambda \sqrt{k(1+2c_{\nu_R})}}{\sqrt{e^{2(1/2+c_{\nu_R})k\pi R}-1}} (\nu\nu_R H + \nu_R h\tilde{\nu} + h\nu\tilde{\nu}_R) + h.c.$$

So we identify 4D yukawa coupling constant

$$\lambda_4 = \frac{\lambda \sqrt{k(1 + 2c_{\nu_R})}}{\sqrt{e^{2(1/2 + c_{\nu_R})k\pi R} - 1}}$$

The Model: B-term

• Do the same for the fermionic part of the Majorana mass terms

$$\mathcal{L}_{M} \simeq \frac{1}{2} M_{2} e^{2c_{\nu_{R}}k\pi R} \nu_{R} \nu_{R} R\delta(y-\pi) + \frac{1}{2} M_{1} R \nu_{R} \nu_{R} \delta(y).$$

• Canonically normalizing

$$\begin{split} M_{4,IR} &= 2 \frac{(1/2 + c_{\nu_R})kRe^{2c_{\nu_R}k\pi R}}{e^{2(1/2 + c_{\nu_R})k\pi R} - 1} M_2, \\ M_{4,UV} &= 2 \frac{(1/2 + c_{\nu_R})kR}{e^{2(1/2 + c_{\nu_R})k\pi R} - 1} M_1. \end{split}$$

• Replacing the zero mode in the Lagrangian, integrating on y and canonically normalizing we obtain

$$B_4 = k\pi F_T \frac{M_{4,IR}}{M_{4,UV}}.$$

The Model: induced A-term

• Massive gauginos $\rightarrow A_4$ term with a CP violating phase. 1 loop triangle diagram.

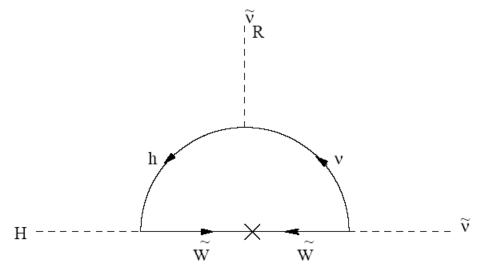


Figure 1: Feynman diagram for A_4 generation.

•Leads to

$$A_4\lambda_4 = 4\lambda_4 g_4^2 C_2(N) \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} \frac{m_{\tilde{W}}}{p^2 + m_{\tilde{W}}^2}$$

Integrating and taking most important Wino contribution we get

$$A_4 \simeq 3\alpha_2 \frac{m_{\tilde{W}} \log\left(k e^{-k\pi R}/m_{\tilde{W}}\right)}{2\pi}.$$

Numerical Results

• To calculate the gravitino mass we used $m_{3/2} \approx \frac{\eta k^2 e^{-2k\pi R}}{\sqrt{3}M_P}$.

Cosmological bounds, Lyman- α forest and WMAP \rightarrow $m_{3/2}\approx$ 20 eV.

Input 1	Output 1	Input 2	Output 2
$c_{\nu_R} = -0.12$	$\lambda_4 = 1.98 \times 10^{-5}$	$c_{\nu_R} = -0.105$	$\lambda_4 = 1.54 \times 10^{-5}$
kR = 8	$ke^{-k\pi R} = 1.216 \times 10^7 \text{GeV}$	kR = 8.42	$ke^{-k\pi R} = 9.75 \times 10^6 \text{GeV}$
$M_1 = 3 \times 10^{14} \text{GeV}$	$M_{4,UV} = 9.23 \times 10^6 \text{GeV}$	$M_1 = 1.1 \times 10^{15} \mathrm{GeV}$	$M_{4,UV} = 6.148 \times 10^6 \mathrm{GeV}$
$M_2 = 1 \times 10^{10} \text{GeV}$	$M_{4,IR} = 0.73 \mathrm{GeV}$	$M_2 = 10^{10} \mathrm{GeV}$	$M_{4,IR} = 0.21 \mathrm{GeV}$
$k = 1 \times 10^{18} \mathrm{GeV}$	$m_{\lambda_1} = 484 \text{GeV}$	$k = 3 \times 10^{18} \text{GeV}$	$m_{\lambda_1} = 479 \mathrm{GeV}$
$\lambda = 0.32/\sqrt{k}$	$A_4 = 70.11 \mathrm{GeV}$	$\lambda = 0.6/\sqrt{k}$	$A_4 = 66 \mathrm{GeV}$
$\eta = 10^{-3}$	$m_{\nu} = 1.29 \times 10^{-3} \mathrm{eV}$	$\eta = 1.3 \times 10^{-3}$	$m_{\nu} = 1.176 \times 10^{-3} \mathrm{eV}$
	$B_4 = 0.0019 \text{GeV}$		$B_4 = 0.00089 \mathrm{GeV}$
	$\Gamma_4 = 0.00029 \mathrm{GeV}$		$\Gamma_4 = 0.00011 \text{GeV}$
	$\epsilon_L = 1.12 \times 10^{-6}$		$\epsilon_L = 1.42 \times 10^{-6}$
	$m_{3/2}~pprox~20{ m eV}$		$m_{3/2}~pprox~17{ m eV}$
	$M_4/\lambda_4^2 = 2.44 \times 10^{16} \mathrm{GeV}$		$M_4/\lambda_4^2 = 3.0825 \times 10^{16} \mathrm{GeV}$
	$N_{\rm KK} = 0.55$		$N_{\rm KK} = 0.40$
	$n_B/s \simeq 7.2 \times 10^{-11}$		$n_B/s~\simeq~9.61 imes10^{-11}$

Table 2: Results

 Table 3: Results

Conclusions

• We are able to predict a lepton asymmetry which agrees with experimental bounds in a fairly constrained simple model in warped extra dimensions. The Majorana mass $M_4 \sim T \sim O(10^7 \text{ GeV})$, much smaller than in regular leptogenesis scenarios, gives us freedom not to rely on the resonance condition.

• The values of the 5D parameters are natural with the slight exception of M_2 . We satisfy the out of equilibrium condition for natural values of M_1 and at the same time obtain a neutrino mass in accordance with experimental constraints which also maximizes the efficiency in the lepton asymmetry generation.

• The gravitino is the LSP and despite not being a good dark matter candidate, it satisfies the bounds from WMAP and Lyman- α forest.

Extra Slides

<u>The Model: Interpretation of δ^2 -terms</u>

Majorana mass term localized on UV brane

$$\frac{1}{2}M_1\nu_R(x,0)\nu_R(x,0) = M_1\sum_{n,m} f_R^{(n)}(0)f_R^{(n)}(0)\nu_R^{(n)}(x)\nu_R^{(m)}(x)$$

Interpreted in matrix form in the basis $(\nu_R^{(0)}(x), \nu_R^{(1)}(x), \nu_R^{(2)}(x), \ldots)$

$$S = \begin{pmatrix} f_R^{(1)}(0)f_R^{(1)}(0) & f_R^{(1)}(0)f_R^{(2)}(0) & f_R^{(1)}(0)f_R^{(3)}(0) & \dots \\ f_R^{(2)}(0)f_R^{(1)}(0) & f_R^{(2)}(0)f_R^{(2)}(0) & f_R^{(2)}(0)f_R^{(3)}(0) & \dots \\ f_R^{(3)}(0)f_R^{(1)}(0) & f_R^{(3)}(0)f_R^{(2)}(0) & f_R^{(3)}(0)f_R^{(3)}(0) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• $g_R^{(n)}$ complete orthonormal system $\rightarrow \qquad \delta(0) = \sum_k g_R^{(k)}(0)g_R^{(k)}(0) \rightarrow M_1^2 \sum_{n,m} g_R^{(n)}(0)g_R^{(m)}(0)\delta(0)\tilde{\nu}_R^{(n)}(x)\tilde{\nu}_R^{(m)*}(x) = M_1^2 \sum_{n,m,k} g_R^{(n)}(0)g_R^{(k)}(0)g_R^{(k)}(0)g_R^{(m)}(0)\tilde{\nu}_R^{(n)}(x)\tilde{\nu}_R^{(m)*}(x)$

Which can be interpreted in the basis $(\tilde{\nu}_R^{(0)}(x), \tilde{\nu}_R^{(1)}(x), \tilde{\nu}_R^{(2)}(x), \ldots)$ as $M_1^2S' \times S'$.

The Model: CP violating phase

• Important terms for CP violation in the 4D Lagrangian

$$-\Delta \mathcal{L}_{4D} = \dots + \lambda_4 (\nu \nu_R H + \nu_R h \tilde{\nu} + h \nu \tilde{\nu}_R) + g_{4,2} \sqrt{2} (\tilde{\nu}^* \tilde{W} \nu + H^* \tilde{W} h) + \frac{1}{2} \tilde{B}_4 \tilde{\nu}_R \tilde{\nu}_R + \frac{1}{2} (M_{4,IR} + M_{4,UV}) \nu_R \nu_R + \frac{1}{2} m_{\tilde{W}} \tilde{W} \tilde{W} + h.c.$$

Where $ilde{B}_4 = B_4 M_4 = k \pi F_T M_{4,IR}$ and $m_{ ilde{W}} \propto F_T$.

•Conformal sector invariant under $U(1)_R$ and $U(1)_{PQ}$ symmetries.

Field	R-Charge	PQ-Charge
Н	0	-2
h	-1	-2
$\tilde{\nu}$	1	0
ν	0	0
$\tilde{\nu}_R$	1	2
ν_R	0	2
\tilde{W}	1	0

Table 1: R-Charges

• No possible way to eliminate CP-violating phase $\phi = \arg \left(M_4 \, m_{\tilde{W}} \tilde{B}_4^* \right) \rightarrow \phi = \arg \left(M_4 M_{4,IR}^* \right)$

Constraints

• Baryon asymmetry (WMAP and BBN):

 $6.5\times 10^{-11} \stackrel{<}{_\sim} n_B/s \stackrel{<}{_\sim} 9.5\times 10^{-11}$

We can write the baryon to entropy ratio as

$$\frac{n_B}{s} = -\left(\frac{24+4n_H}{66+13n_H}\right) Y_{\tilde{\nu}_R}^{\rm eq} \xi \left[\frac{4\Gamma|B_4|}{4|B_4|^2+\Gamma^2}\right] \frac{|A_4|}{M_4} \sin(\phi)$$

Where $Y_{\tilde{\nu}_R}^{eq} = 45\zeta(3)/(\pi^4 g_*)$ and ξ is an efficiency parameter.

•Entropy density $s \sim g_*$ where g_* is the thermalized number of degrees of freedom.

 \therefore KK modes, if thermalized, will contribute to $g_* \rightarrow$ dilution of asymmetry.

 \therefore $ke^{-k\pi R} \gtrsim M_4$. Values of kR ~ 10 stabilize R=<T(x)>.

Left handed neutrino mass

$$m_{\nu} \sim \frac{v^2 |\lambda_4|^2}{M_4}$$

Where $v = \langle H(x) \rangle = 174$ GeV, $tan\beta \gg 1$.

Constraints and out of equilibrium decay

• Decay rate Γ_4 slower than expansion rate $H = 1.66g_*^{1/2}T^2/M_P \rightarrow$

$$M_4/|\lambda_4|^2 \gtrsim \frac{M_P}{4\pi \times 1.66 \times (1.2)^2 \sqrt{g_*}} \text{GeV}$$

when T ~ M_4 (M_P =4.2x10¹⁸GeV, $g_*=N_{KK}g_{*1}+g_{*2}$).

- Now, from the expressions of M₄ and λ_4 we see $M_4/\lambda_4^2 \simeq kRM_1$
- \therefore M₁~O(10¹⁵GeV)
- At the same time $M_4/\lambda_4^2 = \frac{v^2}{m_\nu} \rightarrow m_\nu \sim 10^{-3} \text{ eV}$
- Mass of the NLSP $\tilde{\tau}_1$ in agreement with experimental constraints $m_{\tilde{\tau}_1} \gtrsim 100 \text{ GeV}$

$$\frac{dm_{\tilde{\tau}_1}^2}{dt} = \dots + \frac{1}{8\pi^2} \left(-\frac{12}{5} g_{4,1}^2 m_{\tilde{B}}^2 \right) + \dots$$

• $\therefore m_{\lambda_1} \gtrsim 500 \text{ GeV}$

Out of equilibrium decay

• There are 49 chiral superfields on the UV brane \Rightarrow 98x(1+7/8) \approx 184. The gauge superfields zero-modes contribute 12x2x15/8=45 d.o.f and the r.h neutrinos zero-modes 3x2x15/8 \approx 11. \therefore g_{*2}=240.

- KK towers part of N=2 SUSY \rightarrow each tower adds 60x15/8 \approx 112. \therefore g_{*1}=112.
- To estimate N_{KK} we use $s=(\rho+p)/T$, where

$$\begin{split} \rho &= \frac{g}{2\pi^2} \int_m^\infty \frac{(E^2 - m^2)^{1/2}}{e^{(E-\mu)/T} - 1} E^2 dE \\ p &= \frac{g}{6\pi^2} \int_m^\infty \frac{(E^2 - m^2)^{3/2}}{e^{(E-\mu)/T} - 1} dE \end{split}$$

Taking T »µ, we define for each KK level $N_{\text{KK}}|_n = \frac{s|_{n,non-rel}}{s|_{n,rel}}$ where $s|_{n,rel} = g(2\pi^2/45)T_{,rel}^3$ and $N_{\text{KK}} = \sum_{n=1}^{+\infty} N_{\text{KK}}|_n$

• First excited gauge KK levels $m_{n,V} \simeq (n - \frac{1}{4})\pi k e^{-k\pi R}$.

More Numerical Results

Input 3		Output 3			
c_{ν_R}	=	-0.105	λ_4	=	2.138×10^{-5}
kR	=	7.6	$ke^{-k\pi R}$	=	$8.546\times 10^6{\rm GeV}$
M_1	=	$3.3 imes 10^{14} { m GeV}$	$M_{4,UV}$	=	$1.27 imes 10^7 { m GeV}$
M_2	=	$3 \times 10^9 {\rm GeV}$	$M_{4,IR}$	=	$0.77{ m GeV}$
k	=	$2 imes 10^{17} { m GeV}$	m_{λ_1}	=	$537{ m GeV}$
λ	=	$0.3/\sqrt{k}$	A_4	=	$74.4{ m GeV}$
η	=	$1.5 imes 10^{-3}$	$m_{ u}$	=	$1.086\times 10^{-3}\mathrm{eV}$
			B_4	=	$0.0015{ m GeV}$
			Γ_4	=	$0.00046~{\rm GeV}$
			ϵ_L	=	1.71×10^{-6}
			$m_{3/2}$	\approx	$15\mathrm{eV}$
			M_4/λ_4^2	=	$2.786\times 10^{16}{\rm GeV}$
			$N_{\rm KK}$	=	1.38
			n_B/s	\simeq	8.35×10^{-11}

 Table 4: Results