LONG LIVED STAUS IN ICECUBE FROM ATMOSPHERIC NEUTRINOS

David Rainwater University of Rochester (with S. Ando, J. Beacom and S. Profumo)

- charged NLSPs and dark matter
- neutrino fluxes
- stau cross sections
- stau fluxes

Pheno 07 May 8, 2007

Motivation: dark matter! (among other things)

We know it's out there – but what is it?

If DM was thermally produced, we can calculate its relic density (in convenient units):

$$\Omega_X h^2 \simeq rac{0.1\,\mathrm{pb}\cdot c}{\langle \sigma_A v
angle}$$

EW-sized cross section!

Reinterpret as a mass:

$$\langle \sigma_A v \rangle = \frac{m_{\chi}^2}{m_W^4} \longrightarrow m \sim 100 \text{ GeV}$$

Perhaps connected to EW scale? \Rightarrow if so, expect to produce DM at colliders, soon

 \rightarrow but what if this particle decays after freeze-out?

Late-decaying particles

New physics can have long-lived next-to-lightest particles ("NLSP"s):

- supersymmetry (SUSY):
 - \cdot gravitino lightest SUSY particle (LSP) slow NLSP decay
 - · near NLSP–LSP mass-degeneracy again, slow NLSP decay
- universal extra dimensions (UED):
 - · Kaluza-Klein graviton excitation is DM long-lived "NLSP"
- $\langle \langle \text{ your favorite model with } \gamma c \tau \sim R_{\oplus} \text{ here } \rangle \rangle$
- \rightarrow no DM underground detector signal (effectively sterile), no galactic center γ rays, etc.

But NLSP likely light, could be produced at colliders:

- If neutral, looks like DM in collider, but isn't. (How to sort out?)
- If charged NLSP, stands out (is a major discovery): would suggest super-WIMP DM.
- [Feng, Su, Takayama, PRD 70:063514(2004)]

Charged NLSPs and dark matter

 \rightarrow C-NLSPs could be produced by cosmic neutrinos in upper atmosphere, then observed in neutrino telescopes (IceCube): $\nabla p \rightarrow \chi \chi \rightarrow \widetilde{\tau} \widetilde{\tau}$ gives "double upgoing muon" signal

[Albuquerque, Burdman, Chacko, PRL 92:221802 & PRD 75:035006] [Ahlers, Kersten, Ringwald, JCAP 0607, 005]

These studies used SUSY: gravitino LSP and stau NLSP. We adopt the same framework.

These studies assumed cosmogenic high-energy neutrinos (the Waxman-Bahcall flux).

Our big question: what really are the largest neutrino sources?

Our goal: calculate stau flux at detector:

$$\frac{dF_{\tilde{\tau}}}{dE_{\nu}} \propto \frac{dF_{\nu}}{dE_{\nu}} \sigma(\nu p \to \tilde{\tau}\tilde{\tau}) \quad (\text{and stau energy losses})$$

NEUTRINO FLUXES

Cosmogenic v's: the Waxman-Bahcall limit on fluxes

Assumption: ultra-high-energy (UHE) v's from AGNs, GRBs, etc. (never observed), normalized to UHE protons (known observed flux). \rightarrow previous C-NLSP/IceCube studies relied on the maximal flux

W–B is actually an <u>upper limit</u> on cosmogenic UHE v fluxes. It assumes:

optically thin sources extrapolation for $E_v < 5 \times 10^7$ GeV maximal possible values at various steps

The normalization could be much lower.

The normalization could also be much higher: opaque v sources.

Other possible UHE ν sources

① Atmospheric conventional neutrinos

- · cosmic ray protons create atmospheric pions & kaons
- \cdot pions & kaons lose energy, decay to lower-energy v's
- \rightarrow well-known/measured flux

[cf. Candia & Roulet, JCAP 0309,005]

② Atmospheric prompt-decay neutrinos

- \cdot cosmic ray protons create atmospheric charmed mesons
- \cdot charmed mesons decay promptly to high-energy v's
- → normalization still unknown, depends on PDFs & NLO QCD (IceCube will measure)

[cf. Beacom & Candia, JCAP 0411,009;

Martin, Ryskin & Stasto, Acta Phys. Polon. B34,3273]

► These sources are naïvely "small", but is that really so?

<u>The neutrino fluxes</u> – some surprises!

<u>The neutrino fluxes</u> – some surprises!

- ► depending on E_v, prompt decay v flux can dominate (also, WB-GRB predicted flux is far lower)
- prompt flux is highly uncertain (IceCube will measure)
- \blacktriangleright atmospheric v flux dominates at even lower E_v

STAU CROSS SECTIONS

v-p cross sections in SUSY

We first need to calculate the neutrino-proton xsec for SUSY pairs.

Points and assumptions:

- 1. $2 \rightarrow 2$ xsec dominated by production threshold squark/gluino plus slepton/sneutrino masses
- 2. All sparticles decay promptly to NLSPs.
- 3. σ via LO SUSY-MADEVENT: [Plehn, DR, 2005]
 NLO results not known (our result thus conservative)
 CTEQ6L1 LO PDFs
- 4. Sum over NC & CC, squark + antisquark, etc.– note not equal near threshold, but irrelevant for calc'n
- 5. SUSY model points chosen not to conflict with existing data.
- 6. Gravitino mass irrelevant provided $\gamma c \tau_{\tilde{\tau}} \gtrsim R_{\oplus}$ (typically 1 MeV to 1 GeV minimum)

The SUSY model points

We choose 2 mSUGRA and 2 GMSB points to study: [cf. DeRoeck et al., hep-ph/0508198; SPS benchmarks, hep-ph/0202233] $sgn(\mu) > 0$ always

Input parameters:

mSUGRA	$M_{1/2}$	m_0	$tan \beta$	A_0	
Ι	280 GeV	10 GeV	11	0	
3	440 GeV	20 GeV	15	-25 GeV	
GMSB	M _{mes}	Λ	$tan \beta$	N _{mes}	
II	70 TeV	35 TeV	15	3	
SPS7	80 TeV	40 TeV	15	3	

The SUSY model points

We choose 2 mSUGRA and 2 GMSB points to study: [cf. DeRoeck et al., hep-ph/0508198; SPS benchmarks, hep-ph/0202233] $sgn(\mu) > 0$ always

Mass spectra (GeV):

mSUGRA	$m_{\widetilde{q}}$	$m_{\widetilde{l}}$	$m_{\widetilde{v}}$	$m_{\chi^\pm_1}$	$m_{\chi_1^0}$
Ι	620	200	180	200	110
3	940	300	290	340	180
GMSB	$m_{\widetilde{q}}$	$m_{\widetilde{l}}$	$m_{\widetilde{v}}$	$m_{\chi^\pm_1}$	$m_{\chi^0_1}$
II	800	230	210	240	140
			1		

Results for SUSY cross sections

 \rightarrow consistent with previous studies [Ahlers ... ; Albuquerque ...]

Cross sections depend on masses (fixed $E_v = 10^8 \text{ GeV}$)

Cross sections depend on masses (fixed $E_v = 10^8 \text{ GeV}$)

– p.14

STAU FLUXES

Translating stau cross sections to flixes

Recall: prompt sparticle decay (squarks, sleptons), to staus. Assume each stau gets half incoming energy: $E_{\tilde{\tau}} = E_v/2$

$$\begin{split} \frac{dF_{\widetilde{\tau}}}{dE_{\nu}} &\equiv \int_{2\pi} \Omega \, \frac{d\Phi_{\widetilde{\tau}}(E_{\nu},\Omega)}{dE_{\nu}} \\ &= \int_{2\pi} \Omega \int_{0}^{X_{tot}(\Omega)} \frac{dX}{m_{p}} \, 2\sigma_{\nu N}^{SUSY}(E_{\nu}) \exp\left(-\frac{X}{m_{p}}\sigma_{\nu N}^{tot}\right) \frac{d\Phi_{\nu}(E_{\nu})}{dE_{\nu}} \end{split}$$

- \cdot integrate solid angle only below horizon
- \cdot exponential suppression for SM interaction depletion of ν flux
- · X is the column depth, $dX = \rho(l, \Omega)dl$ (Earth density is a homogenous 3 g/cm⁻³)
- \rightarrow this gets us the stau flux *before energy losses*

Stau energy losses in earth

- ionization losses negligible
- dominant losses from Bremsstrahlung in atomic *E* fields [Albuquerque et al.; Ahlers et al.]
 [Reno, Sarcevic, Su, Astropart. Phys. 24:107(2005)]
- ► solve the energy loss equation

$$\frac{dE_{\widetilde{\tau}}}{dX} = \beta_{\widetilde{\tau}} E_{\widetilde{\tau}}$$

where $\beta_{\tilde{\tau}} = \beta_{\mu} \cdot m_{\mu}/m_{\tilde{\tau}}$ (ratio of charged-particle masses)

• weak-interaction energy losses must be included for $E > 10^9$ GeV [Reno, Sarcevic, Uscinski, PRD 74:115009(2006)]

Stau event rates at the detector

prompt v's can be significant component or even dominant (depends on the real WB flux, if it exists)

<u>Relative stau flux contributions</u> (at the detector)

CONCLUSIONS

- Thermally-produced DM may be at EW scale, produced at colliders; or perhaps could be in some scenarios.
- Long-lived NLSPs also (pair) produced via UHE cosmic v's.
- Charged NLSPs (e.g. staus) could be observed by IceCube.
- Observation: prompt v flux from cosmic protons large, possibly larger than WB extra-galactic flux.
- Charged NLSP flux in IceCube could be larger than expected, and are more "guaranteed" is NLSPs exist.

