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Motivation: dark matter! (among other things)
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We know It’s out there — but what is 1t?




If DM was thermally produced, we can calculate its relic density

(in convenient units):

0.1pb-c
Qxh2 ~ P
(OAV)
EW-sized cross section!
Reinterpret as a mass:
M2
X
(OAV) = — > m ~ 100 GeV
My

Perhaps connected to EW scale?
= If s0, expect to produce DM at colliders, soon

— but what If this particle decays after freeze-out?



Late-decaying particles

New physics can have long-lived next-to-lightest particles (“NLSP”s):

e supersymmetry (SUSY):

- gravitino lightest SUSY particle (LSP) — slow NLSP decay

- near NLSP—LSP mass-degeneracy — again, slow NLSP decay
e universal extra dimensions (UED):

- Kaluza-Klein graviton excitation is DM — long-lived “NLSP”
e (( your favorite model with yct ~ Rg here ))

— no DM underground detector signal (effectively sterile),
no galactic center y rays, etc.

But NLSP likely light, could be produced at colliders:
If neutral, looks like DM in collider, but isn’t. (How to sort out?)

If charged NLSP, stands out (is a major discovery):
would suggest super-WIMP DM.
[Feng, Su, Takayama, PRD 70:063514(2004)] —p.



Charged NLSPs and dark matter

— C-NLSPs could be produced by cosmic neutrinos in upper
atmosphere, then observed in neutrino telescopes (IceCube):

Vp — XX — TT gives “double upgoing muon” signal

[Albuquerque, Burdman, Chacko, PRL 92:221802 & PRD 75:035006]
[Ahlers, Kersten, Ringwald, JCAP 0607, 005]

These studies used SUSY: gravitino LSP and stau NLSP.
We adopt the same framework.

These studies assumed cosmogenic high-energy neutrinos
(the Waxman-Bahcall flux).

Our big question: what really are the largest neutrino sources?

Our goal: calculate stau flux at detector:

dFs _ dR .
bl e L) . |
dE, A dEy o(vp — Tt) (and stau energy losses)
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Cosmogenic v's. the Waxman-Bahcall [imit on fuxes

Assumption: ultra-high-energy (UHE) v’s from AGNs, GRBs, etc.
(never observed), normalized to UHE protons (known observed flux).

— previous C-NLSP/IceCube studies relied on the maximal flux

W-B is actually an upper limit on cosmogenic UHE v fluxes.
It assumes:

optically thin sources
extrapolation for E, < 5 x 107 GeV
maximal possible values at various steps

The normalization could be much lower.

The normalization could also be much higher: opaque v sources.



Other possible UHE v sources

[1 Atmospheric conventional neutrinos
. cosmic ray protons create atmospheric pions & kaons
- pions & kaons lose energy, decay to lower-energy v’s
— well-known/measured flux
[cf. Candia & Roulet, JCAP 0309,005]

[1 Atmospheric prompt-decay neutrinos
. cosmic ray protons create atmospheric charmed mesons
- charmed mesons decay promptly to high-energy v’s
— normalization still unknown, depends on PDFs & NLO QCD
(IceCube will measure)

[cf. Beacom & Candia, JCAP 0411,0009;
Martin, Ryskin & Stasto, Acta Phys. Polon. B34,3273]

» These sources are naively “small”, but is that really so?



The neutrino fluxes — some surprises!
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The neutrino fluxes — some surprises!
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» depending on E,, prompt decay v flux can dominate
(also, WB-GRB predicted flux is far lower)

e prompt flux is highly uncertain (IceCube will measure)

» atmospheric v flux dominates at even lower E



—p.1



V—pP Cross sections in SUSY

We first need to calculate the neutrino-proton xsec for SUSY pairs.

Points and assumptions:

1.

2 — 2 xsec dominated by production threshold —
squark/gluino plus slepton/sneutrino masses

. All sparticles decay promptly to NLSPs.
. 0 Vvia LO SUSY-MADEVENT: [Plehn, DR, 2005]

NLO results not known (our result thus conservative)
CTEQ6L1 LO PDFs

. Sum over NC & CC, squark + antisquark, etc.

— note not equal near threshold, but irrelevant for calc’n

. SUSY model points chosen not to conflict with existing data.

. Gravitino mass irrelevant provided yct;: 2 Rg

(typically 1 MeV to 1 GeV minimum)

—-pl



The SUSY model points

We choose 2 mMSUGRA and 2 GMSB points to study:
[cf. DeRoeck et al., hep-ph/0508198; SPS benchmarks, hep-ph/0202233]
sgn(p) >0 always

Input parameters:

MSUGRA My1/2 Mo tanf3 Ao
| 280 GeV | 10 GeV | 11 0
£ 440 GeV | 20GeV | 15 | —25GeV
GMSB Mmes N tan3 Nmes
|| /0TeV | 35 TeV | 15 3
SPS7 80 TeV | 40TeV | 15 3

—p.l



The SUSY model points

We choose 2 mMSUGRA and 2 GMSB points to study:
[cf. DeRoeck et al., hep-ph/0508198; SPS benchmarks, hep-ph/0202233]

sgn(p) >0 always

Mass spectra (GeV):
MSUGRA | mg | my | my My | Myo
I 620 | 200 | 180 | 200 | 110
£ 940 | 300 | 290 | 340 | 180
GMSB Mg | My | My | My | Myo
| 800 | 230 | 210 | 240 | 140
SPS7 900 | 260 | 250 | 270 | 160

—p.l



Results for SUSY cross sections
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— consistent with previous studies [Ahlers ... ; Albuquerque ...]



Cross sections depend on masses (fixed Ey = 108 GeV)

1000IIIIIIIIIIIIIIIIIIIIII |
I I TN I0I I

H
P
!

900

X 1
N

800

700

10° 10*

Gaugino/HiggsinoWlass [GeV]

600

Squark Mass [GeV]

"|'"|"'|"'|"'|"'|/'"|"

300

200

10 1 1 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIII
(.?LOO 200 300 400 500 600 700 800 900 1000

Slepton Mass [GeV]



Cross sections depend on masses (fixed Ey = 108 GeV)
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Trandlating stau cross sections to flxes

Recall: prompt sparticle decay (squarks, sleptons), to staus.

Assume each stau gets half incoming energy: Ex = E, /2

dFe _ [ o 9%(ELQ)
dEv B 211 dEv
Xtot (Q X do (E )
_ had 2 SUSY E tot V=V
/Zn / O V)exp< mp VN) dE,

- Integrate solid angle only below horizon
- exponential suppression for SM interaction depletion of v flux
- X is the column depth, dX = p(1,Q)dI

(Earth density is a homogenous 3 g/cm—3)

— this gets us the stau flux before energy losses

-p.l



Stau energy losses in earth

e ionization losses negligible

e dominant losses from Bremsstrahlung in atomic E fields
[Albuguerque et al.; Ahlers et al.]
[Reno, Sarcevic, Su, Astropart. Phys. 24:107(2005)]

» solve the energy loss equation

dE;

ax P

where 33 = B, - my/m; (ratio of charged-particle masses)

e weak-interaction energy losses must be included for E > 10° GeV
[Reno, Sarcevic, Uscinski, PRD 74:115009(2006)]
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Stau event rates at the detector

E, [GeV]
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» prompt v’s can be significant component or even dominant
(depends on the real WB flux, if it exists)
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Relative stau flux contributions (at the detector)
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CONCLUSIONS

e Thermally-produced DM may be at EW scale, produced at
colliders; or perhaps could be in some scenarios.

e Long-lived NLSPs also (pair) produced via UHE cosmic v’s.
e Charged NLSPs (e.g. staus) could be observed by IceCube.

e Observation: prompt v flux from cosmic protons large,
possibly larger than WB extra-galactic flux.

e Charged NLSP flux in IceCube could be larger than expected,
and are more “guaranteed” is NLSPs exist.

» paper in draft, should appear soon

-p.2



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

