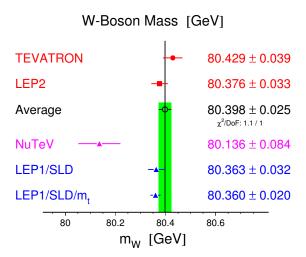
Electroweak radiative corrections to neutrino scattering at NuTeV

Kwangwoo Park, SUNY at Buffalo kpark5@buffalo.edu

Pheno2007 May 8, 2007

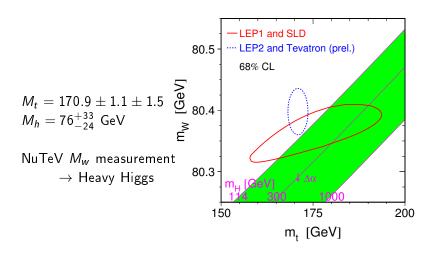
In collaboration with U. Baur and D. Wackeroth.

Motivation


Precise W boson mass measurement :

- W mass is an important SM input parameter
- ▶ Together with top mass, We can predict the Higgs mass.

World Average
$$M_{\rm W}=80.398\pm0.025~{
m GeV}$$


W boson mass

LEP EWWG 2007 (http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2007/)

W boson mass : 80.398 ± 0.025 GeV

LEP EWWG 2007 (http://lepewwg.web.cern.ch/LEPEWWG/plots/winter2007/)

Possible Reasons for NuTeV discrepancy

- ▶ Electroweak Radiative Correction → this talk
- QCD Correction
- Parton Distribution Function
- ► Nuclear Structure
- **.** . . .

Kevin S. McFarland and Sven-Olaf Moch arXiv:hep-ph/0306052 J.T. Londergan arXiv:hep-ph/0408243

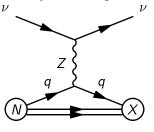
Motivation

- ▶ The W boson mass measured by the NuTeV collaboration differs from the world average by about 3σ
 - → How about including the COMPLETE electroweak one-loop corrections ?
- ▶ We can get more precise mass of Higgs boson if we have W boson mass and top quark with higher precision.

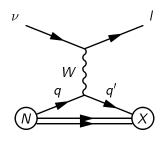
Some of Discussion: http://home.final.gov/ gzeller/nutev.html

Motivation

There is the study of the calculation of full Electroweak $\mathcal{O}(\alpha)$ corrections in the paper of Diener, Dittmaier and Hollik, (K. P. Diener, S. Dittmaier and W. Hollik, Phys. Rev. D **72**, 093002 (2005))


However, no study yet of impact of these corrections on M_w measurement in NuTeV and NuTeV analysis still doesn't include whole Electroweak $\mathcal{O}(\alpha)$ corrections.

 \rightarrow After getting result, Compare with above paper and Study the impact of those corrections with Dr. Kevin McFarland who is one of the NuTeV collaborator



Calculation

Tree-level Feynman diagrams:

< Neutral Current >

< Charged Current >

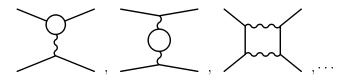
Calculation

$$R = \frac{\sigma_{NC}^{\nu}(\nu N \to \nu X) - \sigma_{NC}^{\bar{\nu}}(\bar{\nu} N \to \bar{\nu} X)}{\sigma_{CC}^{\nu}(\nu N \to IX) - \sigma_{CC}^{\bar{\nu}}(\bar{\nu} N \to \bar{I} X)}$$
$$= \rho^{2} \left(\frac{1}{2} - \sin^{2} \theta_{W}\right)$$

 \leftarrow proposed by Paschos and Wolfenstein

$$\sin^2\theta_w = 1 - \frac{M_w^2}{M_z^2}$$

NuTeV result : $\sin^2 \theta_w = 0.22773 \pm 0.00135 (\mathrm{stat}) \pm 0.00093 (\mathrm{syst})$


NuTeV paper references, http://www-e815.fnal.gov/webspace/e815intr/e815intr.html G. P. Zeller *et al* [NuTeV Collaboration], Phys. Rev. Lett. 88 (2002) 091802

Some details of the Calculation in $\mathcal{O}(\alpha)$ corrections

Examples of Feynman diagrams:

Virtual:

Real:

$$\gamma$$
, γ , ...

Some details of the Calculation in $\mathcal{O}(\alpha)$ corrections

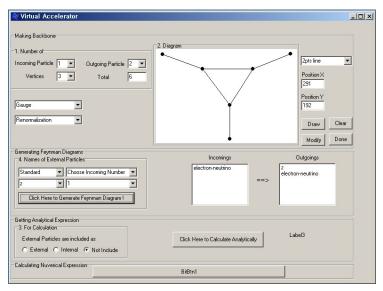
Parton Level :
$$d\hat{\sigma}_{NC,CC} = dp \cdot \bar{\Sigma}_{spin,color} |\mathcal{M}|^2$$

$$= dp_{2\to 2} \left\{ |\mathcal{M}_{tree\ level}|^2 + 2Re(\mathcal{M}_{virtual}\mathcal{M}^*_{tree\ level}) \right\}$$

$$+ dp_{2\to 3} |\mathcal{M}_{real}|^2$$

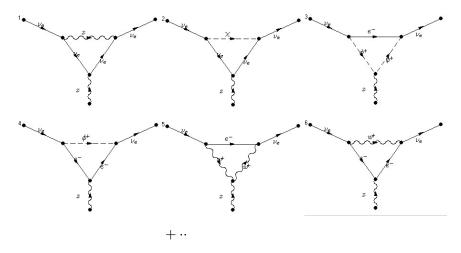
Hadronic cross section is obtained by convoluting $d\hat{\sigma}$ with parton distribution function

Some details of the Calculation in $\mathcal{O}(\alpha)$ corrections


- Feynman t'Hooft gauge
- On-Shell renormalization scheme
- Soft and collinear singularities is regularized by using fictitious γ mass and fermion masses

Introducing the newly developed computational tool - "Virtual Accelerator"

There are several tools such as FeynArts, FeynCalc, LoopTools, Grace...


- User friendly interface
- User interactive tool
- Showing 8 calculation steps
- Gauge choice Landau, Feynman
- ► Renormalization scheme On-Shell, Minimal substraction(MS).
- Ease to add other models QCD,SUSY,...
- Generating diagram images and LATEX files

Screen Shot of "Virtual Accelerator"

Example of Diagram - ν_e, ν_e, Z Vertex

"Virtual Accelerator" create following images:

Example of Calculation - ν_e, ν_e, Z Vertex

"Virtual Accelerator" produce analytic expression:

$$\mathcal{M}_{\mathrm{virtual}} = \cdots \bar{u} (F_V \gamma_\mu + F_A \gamma_\mu \gamma_5) v \cdots$$

1: $-24\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_1(1284)$ 2: $-24\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_{12}(1266)$ $3: -24\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_{11}(1260)$ $4:-8\gamma_{18}p_2^{18}p_{113}v(\nu_e)^3C_1(1218)$ $5: -8\gamma_{18}p_2^{18}p_{113}v(\nu_e)^3C_{12}(1182)$ $6: -8\gamma_{18}p_2^{18}p_{113}v(\nu_e)^3C_{11}(1176)$ 7 : $6\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_1d(918)$ 8 : $6\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_{12}d(908)$ 9: $6\gamma_{18}p_2^{18}p_{113}v(\nu_e)a(\nu_e)^2C_{11}d(904)$ 10 : $2\gamma_{18}p_2^{18}p_{113}v(\nu_e)^3C_1d(882)$ 11 : $2\gamma_{18}p_0^{18}p_{113}v(\nu_e)^3C_{12}d(864)$ $12: 2\gamma_{18}p_2^{18}p_{113}v(\nu_e)^3C_{11}d(860)$ 13 : $8\gamma_{18}\gamma_5 p_2^{18} p_{113} a(\nu_e)^3 C_1(1440)$ 14 : $8\gamma_{18}\gamma_{5}p_{2}^{18}p_{113}a(\nu_{e})^{3}C_{12}(1422)$ 15 : $8\gamma_{18}\gamma_5 p_2^{18} p_{113} a(\nu_e)^3 C_{11}(1416)$ 16: $24\gamma_{18}\gamma_5 p_2^{18} p_{113} v(\nu_e)^2 a(\nu_e) C_1(1224)$ 17 : $24\gamma_{18}\gamma_5p_2^{18}p_{113}v(\nu_e)^2a(\nu_e)C_{12}(1206)$ 18 : $24\gamma_{18}\gamma_5 p_2^{18} p_{113} v(\nu_e)^2 a(\nu_e) C_{11} (1200)$ $19 : -2\gamma_{18}\gamma_5 p_2^{18} p_{113} a(\nu_e)^3 C_1 d(1002)$ $20 : -2\gamma_{18}\gamma_5 p_2^{18} p_{113} a(\nu_e)^3 C_{12} d(992)$ $21 : -2\gamma_{18}\gamma_5 p_2^{18} p_{113} a(\nu_e)^3 C_{11} d(988)$ $22 : -6\gamma_{18}\gamma_5 p_2^{18} p_{113} v(\nu_e)^2 a(\nu_e) C_1 d(886)$ 23 : $-6\gamma_{18}\gamma_5 p_2^{18} p_{113} v(\nu_e)^2 a(\nu_e) C_{12} d(876)$ $24 : -6\gamma_{18}\gamma_5 p_2^{18} p_{113} v(\nu_e)^2 a(\nu_e) C_{11} d(872)$ 25 : $-4\gamma_5 p_{113} a(\nu_e)^3 C_{22} m_{\nu_e} (1430)$ $26: -8\gamma_{\epsilon}p_{113}a(\nu_{\epsilon})^{3}C_{12}m_{...}(1418)$

 $32: 2\gamma_5 p_{113} a(\nu_e)^3 C_{22} dm_{\nu_e} (996)$ $33:4\gamma_5 p_{113} a(\nu_e)^3 C_{12} dm_{\nu_e} (990)$ $34: 2\gamma_5 p_{113} a(\nu_e)^3 C_{11} dm_{\nu_e} (986)$ $35:10\gamma_5 p_{113} v(\nu_e)^2 a(\nu_e) C_2 dm_{\nu_e} (888)$ $36:6\gamma_5 p_{113}v(\nu_e)^2 a(\nu_e)C_{22}dm_{\nu_e}(880)$ $37: 12\gamma_5 p_{113} v(\nu_e)^2 a(\nu_e) C_{12} dm_{\nu_e} (874)$ $38:6\gamma_5 p_{113}v(\nu_s)^2 a(\nu_s)C_{11}dm_{sc}$ (870) $39: 4\gamma_5 p_{113} a(\nu_e)^3 m_{\nu_e} C_0 d(824)$ $40:6\gamma_{\pi}p_{113}a(\nu_{\sigma})^{3}C_{1}dm_{\nu_{\sigma}}$ (816) $41: 4\gamma_5 p_{113} v(\nu_e)^2 m_{\nu_e} a(\nu_e) C_0 d(772)$ $42:10\gamma_{e}p_{113}v(\nu_{e})^{2}a(\nu_{e})C_{1}dm_{e}$ (764) 43 : $-16\gamma_5 p_{113} a(\nu_e)^3 m_{\nu_e} C_2(688)$ $44: -16\gamma_5 p_{113} v(\nu_a)^2 m_{\nu_c} a(\nu_a) C_2(484)$ $45: -12\gamma_5 p_{113} a(\nu_e)^3 m_{\nu_e} C_0(392)$ $46: -16\gamma_5 p_{113} a(\nu_s)^3 m_{\nu_s} C_1(368)$ $47 : -4\gamma_5 p_{113} v(\nu_e)^2 m_{\nu_e} a(\nu_e) C_0(286)$ $48: -16\gamma_{\kappa}p_{113}v(\nu_{\kappa})^{2}m_{\nu_{\kappa}}a(\nu_{\kappa})C_{1}(258)$ $49: -6\gamma_{13}\gamma_{18}p_2^{18}v(\nu_e)a(\nu_e)^2C_1m_{\nu_e}(542)$ $50: -6\gamma_{13}\gamma_{18}p_2^{18}v(\nu_a)a(\nu_a)^2C_{12}m_{\nu_a}$ (522) $51 : -6\gamma_{13}\gamma_{18}p_2^{18}v(\nu_e)a(\nu_e)^2C_{11}m_{\nu_e}(516)$ $52: -2\gamma_{13}\gamma_{18}p_2^{18}v(\nu_e)^3C_1m_{\nu_e}(486)$ $53: -2\gamma_{13}\gamma_{18}p_2^{18}v(\nu_e)^3C_{12}m_{\nu_e}(452)$ $54 : -2\gamma_{13}\gamma_{18}p_2^{18}v(\nu_e)^3C_{11}m_\nu$ (446) 55 : $8\gamma_{18}\gamma_{13}p_2^{18}v(\nu_e)a(\nu_e)^2m_{\nu_e}C_1(533)$

Status of my calculation

- ► Getting complete of Diagrams up to one-loop · · · · · ✓
- ▶ Getting Analytical Expression for Matrix element ✓
- ▶ Getting Numerical Expression to $\Sigma |\mathcal{M}|^2 \cdot \cdots$ I am here ! (→ working on Box Diagram)
- Getting physical observables such as partonic and hadronic cross section to neutral and charged current processes