Jet Multiplicity and Background Extraction in Inclusive SUSY Analyses at the LHC B.Mellado, S.Padhi, Y.Pan and Sau Lan Wu (University of Wisconsin. Not an ATLAS talk)

Many thanks to S.Dittmaier, L.Flores, F.Petriello and I.van Vulpen Pheno 2007, Madison, 05/07/07

Motivation

> Contribution from tt is ubiquitous in SUSY(-like) searches in leptons + MET+jets final states. W+jets is also very important

Motivation (cont)

\#We are evaluating the possibility of inclusive SUSY (-like) searches with various numbers of jet tags as means for establishing a deviation from the SM with the very first data at the LHC. In particular we are considering analysis scenarios in which we tag $2 j$ or $3 j$ in addition to $4 j$ baseline analysis
$>$ In addition, we should take advantage of NLO computations once validated on control samples. Use NLO computations to reduce theoretical uncertainty of ratios
Availability of QCD NLO computations as of LHC turn on

	$0 \mathbf{j}$	$1 \mathbf{j}$	$2 \mathbf{j}$	$3 \mathbf{j}$
W	Yes	Yes	Yes	$?$
$t \dagger$	Yes	Yes	$?$	No

$$
\begin{aligned}
& \text { Pre-selection } \\
& (1+\text { MET+jets })
\end{aligned}
$$

1. Only one lepton with $P_{T 1}>20 \mathrm{GeV}$. Do not accept events in which a second lepton is found with $P_{T}>6$ GeV (will increase that to 10 GeV)
2. Missing $E_{T}>100 \mathrm{GeV}$
3. M_{T} (lepton $M E T$) $>100 \mathrm{GeV}$

Events with $M_{T}<100 \mathrm{GeV}$ are used as control samples.
4. Classify events according to the following jet
thresholds $\mathrm{P}_{\mathrm{TJ} 1}>150, \mathrm{P}_{\mathrm{T} J 2}>100, \mathrm{P}_{\mathrm{TJ} 3}>50, \mathrm{P}_{\mathrm{TJ} 4}>50$

- These thresholds need to be optimized
- What happens when we consider events that do not have four jets that pass the above thresholds?

Bruce Mellado, PHENO 2007, 07/05/07

Analysis with $\geq \mathbf{4}$ jets

	Cut (GeV)	SU1			SU2			SU3		
\leq		S	S/B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$	S	S/B	$L(5 \sigma)$
λ	$p_{T}>100$	0.220	0.77	183.55	0.042	0.15	4333.97	0.352	1.23	79.54
	$p_{T}>150$	0.206	1.57	111.85	0.036	0.27	2807.99	0.314	2.40	55.38
	$p_{T}>250$	0.163	4.80	69.54	0.020	0.59	2489.57	0.217	6.40	46.50
	$p_{T}>300$	0.135	7.14	69.18	0.013	0.69	3396.33	0.161	8.52	53.59
三	$p_{T}>350$	0.109	10.05	72.49	0.008	0.77	4840.22	0.117	10.83	67.72
	$p_{T}>400$	0.083	13.39	85.71	0.005	0.77	8307.65	0.078	12.62	90.64

Analysis with 3 jets, exclusive ($R<0.5$)

Cut (GeV)		SU1			SU2			SU3		
	S	S / B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$	
$p_{T}>100$	0.110	0.68	404.07	0.002	0.01	-	0.157	0.97	216.39	
$\dot{p}_{T}>150$	0.107	1.21	264.32	0.001	0.02	-	0.149	1.69	150.70	
$\not p_{T}>250$	0.089	3.62	156.26	0.001	0.04	-	0.111	4.54	107.98	
$p_{T}>300$	0.078	5.67	138.82	0.001	0.06	-	0.088	6.42	114.32	
$p_{T}>350$	0.063	7.92	135.76	0.001	0.08	-	0.061	7.64	154.34	
$p_{T}>400$	0.051	10.95	157.77	0.000	0.09	-	0.040	8.61	218.15	

Bruce Mellado, PHENO 2007, 07/05/07

	Analysis with 2				exclusive				R<0.5)	
2	Cut (GeV)	SU1			SU2			SU3		
.ㄷ		S	S/B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$
	$p_{T}>100$	0.081	0.59	625.41	0.000	0.00	-	0.088	0.65	528.34
\pm	$p_{T}>150$	0.077	1.13	380.91	0.000	0.00	-	0.083	1.20	342.12
0	$p_{T}>250$	0.066	3.24	215.06	0.000	0.01	-	0.062	3.02	239.17
-	$p_{T}>300$	0.057	5.08	199.44	0.000	0.01	-	0.049	4.34	244.42
I	$p_{T}>350$	0.049	8.01	176.43	0.000	0.01	-	0.038	6.25	264.18
-	$\not p_{T}>400$	0.040	11.93	178.03	0.000	0.01	-	0.027	8.14	315.65
م	Analysis with 1 jets, exclusive									
.들	Cut (GeV)	SU1			SU2			SU3		
\check{n}		S	S/B	$L(5 \sigma)$	S	S/B	$L(5 \sigma)$	S	S / B	$L(5 \sigma)$
.응	$p_{T}>100$	0.067	0.13	2964.88	0.004	0.01	-	0.108	0.21	1169.22
$\stackrel{\rightharpoonup}{U}$	$p_{T}>150$	0.066	0.19	2165.15	0.004	0.01	-	0.104	0.30	894.61
,	$p_{T}>250$	0.053	0.66	864.90	0.001	0.01	-	0.070	0.88	519.28
$\dot{\sim}$	$p_{T}>300$	0.043	1.25	643.33	0.001	0.02	-	0.048	1.40	529.80
	$p_{T}>350$	0.032	1.73	696.69	0.000	0.02	-	0.028	1.51	866.31
U	$\not p_{T}>400$	0.023	2.41	751.05	0.000	0.01	-	0.016	1.65	1403.09

Bruce Mellado, PHENO 2007, 07/05/07

Looking into tt with MC@NLO

\#MC@NLO has tt to NLO. Description of Pt of tt system and leading jet to LO. Sub-leading jet with Parton shower, but does not disagree too much from Madgraph tt+2jet
ATL-PHYS-2004-035

Red Madgraph t†+2j Black MC@NLO

Bruce Mellado, PHENO 2007, 07/05/07
\#Looking into truth hadron-level jets (cone $\Delta R=0.7$) and checking the fraction of those jets that match top decay products (study 1 lepton analysis)

*Fraction of events with two tagging jets ($\mathrm{P}_{\mathrm{TJ1}}>50$ and $P_{\mathrm{TJ} 2}>40 \mathrm{GeV}$) in which 2 (black), 1 (red) and 0 (green) jets are matched to top decay products

In two jet analysis the large MET region is dominated by $+\dagger+0 \mathrm{j}$ and $\mathrm{t}+\mathbf{+ 1} \mathrm{j}$

*Fraction of events with three tagging jets ($P_{\mathrm{TJ}} 150$ and $\mathrm{P}_{\mathrm{T} \mathrm{T}_{2}}>40 \mathrm{GeV}, \mathrm{P}_{\mathrm{TJ} 3}>40 \mathrm{GeV}$) in which 3 (black), 2 (red), 1 (green) and 0 (blue) jets are matched to top decay products

In three jet analysis the large MET region is dominated by $t++0 j$ and $t+1 \mathrm{j}$ with some contribution from $\mathrm{t}+\mathrm{+} \mathrm{j}$

*Fraction of events with four tagging jets ($P_{\text {TJ1 }}>50$ and $P_{\text {TJ } 2}>40$ $\mathrm{GeV}, \mathrm{P}_{\mathrm{TJ3}}>40 \mathrm{GeV}$ and $\mathrm{P}_{\mathrm{TJ4}}>30 \mathrm{GeV}$) in which 4 (black), 3 (red), 2 (green), 1 (blue) and 0 (yelow) jets are matched to top decay products

In four jet analysis the large MET region is dominated by $t \dagger+1 \mathrm{j}$ and $t \dagger+2 j$ with some contribution from tt+0j and $t \dagger+\geq 3 j$

$\$$ Similar situation is observed when the matching

 efficiency is studied as a function of $M_{T}(l v)$

Outlook

\#We are exploring the discovery potential of SUSY signals for the ATLAS points in the I+MET final state for different jet multiplicities
\Rightarrow For the SUSY points chosen, the final state with 4 jets carry most of the discovery potential, although final states with less jet multiplicity also carry similar discovery potential when combined.

* This statement depends on the SUSY point
\#Tagging 2 or 3 jets inclusively seems feasible and does not degrade discovery potential (for the SUSY points investigated). Tagging 2 or 3 jets brings significant benefits in terms of determination of background
\$Working with theorists to evaluate theory errors for different analysis scenarios

Back-up Slides

Cut (GeV)	SU1			SU2			SU3		
	S	S/B	Frac.	S	S/B	Frac.	S	S/B	Frac.
	0j								
$\dot{p}_{T}>100$	0.062	0.01	0.11	0.023	0.00	0.32	0.122	0.02	0.14
$\dot{p}_{T}>150$	0.041	0.02	0.08	0.007	0.00	0.15	0.081	0.05	0.10
$p_{T}>250$	0.013	0.06	0.03	0.001	0.00	0.03	0.028	0.13	0.05
$\phi_{T}>300$	0.007	0.07	0.02	0.000	0.00	0.02	0.014	0.14	0.04
$p_{T}>350$	0.004	0.08	0.02	0.000	0.00	0.02	0.007	0.13	0.03
$p_{T}>400$	0.003	0.08	0.01	0.000	0.00	0.01	0.004	0.10	0.02
	15								
$p_{T}>100$	0.078	0.09	0.14	0.005	0.01	0.07	0.129	0.14	0.14
$p_{T}>150$	0.075	0.15	0.14	0.004	0.01	0.08	0.119	0.24	0.15
$p_{T}>250$	0.057	0.55	0.14	0.001	0.01	0.06	0.076	0.72	0.15
$\phi_{T}>300$	0.046	0.96	0.14	0.001	0.01	0.05	0.051	1.07	0.14
$p_{T}>350$	0.034	1.34	0.13	0.000	0.01	0.04	0.030	1.18	0.12
$p_{T}>400$	0.024	1.72	0.12	0.000	0.01	0.02	0.017	1.21	0.10
	2 j								
$\dot{p}_{T}>100$	0.090	0.33	0.16	0.001	0.00	0.01	0.104	0.38	0.12
$p_{T}>150$	0.085	0.75	0.16	0.000	0.00	0.01	0.093	0.82	0.12
$p_{T}>250$	0.071	2.43	0.18	0.000	0.01	0.01	0.066	2.27	0.13
$\dot{p}_{T} \gg 300$	0.061	3.83	0.18	0.000	0.01	0.01	0.052	3.27	0.14
$p_{T}>350$	0.051	5.51	0.19	0.000	0.01	0.01	0.039	4.19	0.15
$p_{T}>400$	0.041	7.63	0.20	0.000	0.01	0.01	0.027	5.08	0.16
	Sj								
$p_{T}>100$	0.126	0.41	0.22	0.002	0.01	0.03	0.184	0.60	0.21
$p_{T}>150$	0.119	0.89	0.23	0.002	0.01	0.04	0.169	1.26	0.22
$\phi_{T}>250$	0.095	2.95	0.24	0.001	0.03	0.05	0.117	3.65	0.23
$p_{T}>300$	0.082	4.75	0.25	0.001	0.05	0.06	0.092	5.31	0.25
$p_{T}>350$	0.066	6.78	0.25	0.001	0.07	0.07	0.063	6.48	0.25
$p_{T}>400$	0.052	9.21	0.26	0.000	0.08	0.08	0.041	7.17	0.24
	$\geq 4 \mathrm{j}$								
$\dot{p}_{T}>100$	0.220	0.77	0.38	0.042	0.15	0.57	0.352	1.23	0.39
$\dot{p}_{T}>150$	0.206	1.57	0.39	0.036	0.27	0.73	0.314	2.40	0.41
$p_{T}>250$	0.163	4.80	0.41	0.020	0.59	0.86	0.217	6.40	0.43
$\dot{p}_{T}>300$	0.135	7.14	0.41	0.013	0.69	0.86	0.161	8.51	0.44
$p_{T}>350$	0.109	10.05	0.41	0.008	0.77	0.87	0.117	10.83	0.46
$p_{T} \gg 400$	0.083	13.37	0.41	0.005	0.77	0.88	0.078	12.60	0.47

Cut (GeV)	SU6			SU8 ${ }_{1}$		
	S	S/B	Frac.	S	S/B	Frac.
	$0 \mathrm{0j}$					
$\phi_{T}>100$	0.018	0.00	0.07	0.022	0.00	0.07
$\dot{p}_{T} \gg 150$	0.012	0.01	0.05	0.015	0.01	0.05
$\phi_{T} \gg 250$	0.005	0.02	0.03	0.004	0.02	0.02
$\phi_{T}>300$	0.003	0.03	0.02	0.002	0.02	0.01
$\phi_{T}>350$	0.001	0.02	0.01	0.000	0.01	0.00
$p_{T} \gg 400$	0.001	0.02	0.01	0.000	0.01	0.00
	1 j					
$\phi_{T}>100$	0.026	0.03	0.10	0.042	0.05	0.14
$p_{T} \gg 150$	0.025	0.05	0.11	0.041	0.08	0.15
$\phi_{T}>250$	0.019	0.18	0.11	0.033	0.32	0.16
$p_{T} \gg 300$	0.016	0.32	0.10	0.028	0.59	0.16
$p_{T} \gg 350$	0.012	0.48	0.10	0.021	0.83	0.15
$\phi_{T}>400$	0.008	0.60	0.08	0.013	0.95	0.13
	2 j					
$\phi_{T}>100$	0.025	0.09	0.10	0.036	0.13	0.12
$\phi_{T}>150$	0.024	0.21	0.10	0.034	0.30	0.12
$\phi_{T}>250$	0.020	0.69	0.11	0.027	0.94	0.13
$\phi_{T}>300$	0.017	1.10	0.11	0.023	1.47	0.13
$p_{T} \gg 350$	0.015	1.66	0.12	0.019	2.10	0.14
$p_{T} \gg 400$	0.013	2.37	0.13	0.015	2.84	0.15
	${ }^{3} \mathrm{j}$					
$\phi_{T}>100$	0.048	0.15	0.19	0.058	0.19	0.20
$\dot{p}_{T} \gg 150$	0.045	0.34	0.19	0.056	0.41	0.21
$\phi_{T}>250$	0.038	1.17	0.20	0.044	1.36	0.21
$p_{T}>300$	0.033	1.88	0.21	0.039	2.26	0.22
$p_{T}>350$	0.027	2.73	0.21	0.032	3.28	0.23
$p_{T} \gg 400$	0.022	3.87	0.22	0.026	4.61	0.25
	$\geq 4 \mathrm{j}$					
$\phi_{T}>100$	0.134	0.47	0.53	0.138	0.48	0.47
$p_{T} \gg 150$	0.127	0.97	0.54	0.128	0.96	0.47
$p_{T}>250$	0.102	3.01	0.55	0.098	2.90	0.47
$p_{T} \gg 300$	0.087	4.59	0.56	0.085	4.46	0.48
$p_{T} \gg 350$	0.071	6.52	0.56	0.066	6.09	0.48
$p_{T} \gg 400$	0.055	8.87	0.56	0.049	7.92	0.47

\# Looking into truth hadron-level jets (cone $\Delta R=0.7$) and checking the fraction of those jets that match top decay products $>$ Study 1 lepton analysis

Bruce Mellado, PHENO 2007, 07/05/07

*Fraction of events with two tagging jets ($P_{T J 1}>50$ and $P_{\mathrm{TJ} 2}>40 \mathrm{GeV}$) in which 2 (black), 1 (red) and 0 (green) jets are matched to top decay products

In two jet analysis the large MET region is dominated by $+\dagger+0 \mathrm{j}$ and $\mathrm{t}+\mathbf{+ 1} \mathrm{j}$

*Fraction of events with four tagging jets ($P_{\text {TJ1 }}>50$ and $P_{\text {TJ2 }}>40$ $\mathrm{GeV}, \mathrm{P}_{\mathrm{TJ3}}>40 \mathrm{GeV}$ and $\mathrm{P}_{\mathrm{TJ4} 4}>30 \mathrm{GeV}$) in which 4 (black), 3 (red), 2 (green), 1 (blue) and 0 (yelow) jets are matched to top decay products

In four jet analysis the large MET region is dominated by $t \dagger+1 \mathrm{j}$ and $t \dagger+2 j$ with some contribution from $t++0 j$ and $t \dagger+\geq 3 j$

