High p_T Top Quark Production at the LHC

UB, L.H. Orr all results are preliminary

- 1. Motivation
- 2. Detecting Very Energetic Top Quarks
- 3. Background Calculations
- 4. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Motivation

- Many (most?) models of New Physics predict new particles which decay into $t\bar{t}$ and have masses in the TeV range:
 - rightarrow topcolor (Z')
 - rightarrow Little Higgs (Z')
 - extra dimensions (KK gluons, KK gravitons) [see talk by B. Lillie]
 - torsion gravity (axial vector boson)
 - technicolor, chiral color models, etc....
- to search for $t\bar{t}$ resonances in the TeV region, one must be able to efficiently detect very energetic top quarks

- consider $t\bar{t} \rightarrow \ell \nu b\bar{b}q\bar{q}'$ (leptons+jets channel)
- Standard ATLAS/CMS requirements for identifying top pairs in the lepton+jets channel:
 - rightarrow one isolated charged lepton ($\Delta R(\ell, j) > 0.4$)
 - missing transverse energy/momentum
 - \Leftrightarrow four isolated jets ($\Delta R(j_i, j_k) > 0.4$)
 - two jets are b-tagged
- these requirements are not optimized for detecting very energetic top quarks:
 - due to the Lorentz boost, top quark decay products tend to be more and more collimated with increasing energy
 - The requiring isolated leptons and jets greatly reduces the cross section at large $t\bar{t}$ invariant masses

- LO calculation
- reconstruct $p_L(\nu)$ by requiring $m(\ell\nu) = M_W$
- *b*-tagging efficiency: $\epsilon_b = 60\%$
- benchmark differential cross section for reach: 10⁻⁷ pb/GeV: 1 event/100 GeV bin/100 fb⁻¹

2 – Detecting Very Energetic Top Quarks

- How can we improve the efficiency of detecting very energetic top quarks?
- Consider the lepton+jets final state again
- Give up isolated leptons?
 - needed for triggering
 - \sim non-isolated lepton can be confused with lepton from *b*-decay
 - enhanced background from QCD $b\bar{b}$ + jets background if lepton is not isolated

- Most of the suppression comes from the isolation cut on $t \rightarrow bjj$ decay jets: no isolation cut is imposed on the neutrino in $t \rightarrow b\ell\nu$
- jets with $\Delta R < 0.4$ merge:

 \rightarrow consider $t\bar{t} \rightarrow \ell\nu + n$ jets with n = 2, 3, 4

- For small $m(t\bar{t})$, events where one or two jets do not satisfy the p_T and rapidity cuts (here: $p_T(b, j) > 30$ GeV, |y(b, j)| < 2.5) are the largest source of 2 jet and 3 jet events
- At large $m(t\bar{t})$, jet merging is the dominant source
- In the 2 jet final state, the hadronically decaying top becomes one *b*-tagged jet
- Making use of the 2 jet and 3 jet final state quadruples the observable $t\bar{t}$ cross section at large $m(t\bar{t})$
- Use $t \to b\ell\nu$ to trigger event, then try to find $t \to bjj$ in hadronic recoil
- The benefit is larger for *s*-channel resonances in the $t\bar{t}$ channel: Examples: KK gluons, g^* , and bulk RS KK gluons, G

• issues:

☞ b-tagging:

- → ATLAS: ϵ_b at large $m(t\bar{t})$ may be a factor 3 smaller than at small values
- → and the light jet mistagging probability, $P_{j\rightarrow b}$ may be a factor 3 higher
- \rightarrow observable cross section reduced by an order of magnitude
- \rightarrow the background is potentially large
- → potential solution: use events with one *b*-tag; the efficiency $(2(1 \epsilon_b)\epsilon_b)$ is far less sensitive to ϵ_b
- \rightarrow have to worry about background for events with one tag
- \checkmark QCD radiation: cut on invariant mass of jets may help to discriminate QCD jets and $t \rightarrow bjj$ jets

- what about other $t\overline{t}$ final states?
 - \Leftrightarrow di-lepton channel $(t\bar{t} \rightarrow \ell \nu_{\ell} \ell' \nu_{\ell'} b\bar{b})$
 - → small branching ratio: $\approx 4.7\%$
 - → small background
 - → cannot reconstruct $m(t\bar{t})$ use $\ell\ell'b\bar{b}$ cluster transverse mass instead
 - $\rightarrow \ell \ell' b \overline{b}$ cluster transverse mass falls much faster than $m(t\overline{t})$
 - → but: smaller loss of rate due to isolation cut (two neutrinos...)
 - → we find that the di-lepton mode adds insignificantly to the search reach for $t\bar{t}$ resonances

- \Leftrightarrow all-hadronic mode ($t\bar{t} \rightarrow b\bar{b} + n$ jets)
 - → somewhat larger branching ratio than lepton+jets final state
 - → jet merging: n = 0, ..., 4
 - → QCD multi-jet background is very large; probably have to require two *b*-tags
 - → need to impose invariant mass cuts on jet systems (1 3 jets)
 - → large combinatorial background
 - \rightarrow potentially less gain than from lepton+jets mode with one *b*-tag

3 – Background Calculations

- Concentrate on $t\bar{t} \rightarrow \ell\nu + n$ jets (n = 2, 3, 4) with one or two *b*-tags from now on
- For n = 4 and two *b*-tags, the background is known to be small at the LHC
- For 2 jet and 3 jet final states, the background is potentially more worrisome, because it arises at lower order in perturbation theory
- backgrounds considered: W+ jets, $Wb\bar{b}+$ jets, $(t\bar{b}+\bar{t}b)+$ jets $(t \rightarrow b\ell\nu)$, Wb+ jets, $(t+\bar{t})+$ jets $(t \rightarrow b\ell\nu)$, Wt, Wtj and Wbt $(t \rightarrow bjj)$
- use $\epsilon_b = 0.6$ and $P_{j \rightarrow b} = 1/100$ in the plots shown below

3 jet final state

- After imposing a m_T and a $|m(jj) m_t| < 20$ GeV cut, the back-ground is small
- Even for $\epsilon_b = 0.2$ and $P_{j \to b} = 1/30, S/B > 1$

3 jet final state

- After imposing a m_T and a $|m(jj) m_t| < 20$ GeV cut, the background is still a bit larger than the signal
- For ε_b = 0.2 and P_{j→b} = 1/30, S/B worsens by a factor 3 (2.3) for the 2 jet (3 jet) final state

Jet invariant mass cut

- Consider $t\bar{t} \rightarrow \ell\nu + 2$ jets with one *b*-tag
- main background: W + 2 jets, where one jet is mistagged as a b-jet, and (t + t̄)j, t → bℓν
- One of the jets in the signal has $m(j) \approx m_t$
- background: LO: $m(j) \approx 0$, NLO: m(j) > 0
- but: have to take into account multi-gluon radiation and non-perturbative effects (underlying event)
 - \rightarrow results may depend on jet algorithm used
- to simulate a jet invariant mass cut:
 - ✓ determine the probability density matrix $\mathcal{P}(p_T(j), m(j))$ from W+ jets production in PYTHIA+PGS4
 - Then convolute ME W+2 jet and tj calculation with $\mathcal{P}(p_T(j), m(j))$ and require $|m(j) - m_t| < 20$ GeV

- The invariant mass of a jet with a given p_T strongly depends on the jet algorithm used
- Long tail with k_T algorithm
- very difficult to have a jet with the cone algorithm which has $m(j) > 0.3 \times p_T(j)$

- This results in large differences in the background between the cone and k_T algorithm once a $|m(j) - m_t| < 20$ GeV cut is imposed
- Both signal and background are strongly reduced (signal mostly at small $m(t\bar{t})$)

•
$$S/B \ge 1$$
 (for $\epsilon_b = 0.2$ and $P_{j \to b} = 1/30, S/B > 1/3$)

4 – Conclusions

- $t\bar{t}$ resonances with masses in the TeV range are a signature of many New Physics models
- to maximize the reach of the LHC in searching for such resonances, the standard $t\bar{t}$ identification criteria have to be modified
- We found that the tt̄ → ℓν + 2 jets and tt̄ → ℓν + 3 jets final states with one or two b-tags offer improved chances over the traditional tt̄ → ℓν + 4 jets channel in a search for tt̄ resonances
- However, the background may become an issue at very large $m(t\bar{t})$, especially for final states with one *b*-tag