Precision Gluino Mass Measurement at the LHC

Gabe Shaughnessy

With H. Baer, V. Barger, H. Summy, L-T. Wang hep-ph/0703298

PHENO 2007

May 7, 2007

Mass Measurements

- Mass measurements rely on
 - Bump hunting invariant mass
 - Kinematic endpoints if missing energy is present
 - Difficult if cascade decays are long

- Total rate can also be used to determine mass
 - Can be used in Focus Point region of mSUGRA

mSUGRA Parameter Space

- Relic density observations favors specific regions
 - $\tilde{Z}_1 \tilde{\tau}$ coannihilation
 - Focus Point
 - Decoupled scalars & mixed higgsino-gaugino DM

May 7, 2007

Focus Point Region Spectra

- Neutralinos and charginos typically light
 - soft component of event
- Scalar fermions decoupled (few TeV or more)

HB/FP Sparticle Masses

• Gluino is heaviest gaugino

- Hard component of event

Gaugino Production Cross Section

- Dominated by Neutralino-Chargino production
 - Soft events with high lepton multiplicity
- Gluino pair production rate falls rapidly
 - (key to gluino mass measurement)

Minimal SUSY Cuts

• Apply C1 cuts:

 $E_T^{miss} > \min(100 \text{ GeV}, 0.2 M_{eff})$ $n(jets) \ge 4$ $E_T(j1, j2, j3, j4) > 100, 50, 50, 50 \text{ GeV}$ $S_T > 0.2$ Paige & Hinchliffe

 $M_{eff} = E_T^{miss} + E_T(j1) + E_T(j2) + E_T(j3) + E_T(j4)$

Characteristics of Gluino signal

• Large jet & b-jet multiplicity

 $\begin{array}{ccc} \text{mode} & \text{BF} \\ \hline \tilde{g} \to t\bar{t}\widetilde{Z}_1 & 3.9\% \\ \tilde{g} \to t\bar{t}\widetilde{Z}_2 & 14.2\% \\ \tilde{g} \to t\bar{t}\widetilde{Z}_3 & 15.0\% \\ \tilde{g} \to t\bar{t}\widetilde{Z}_4 & 5.6\% \\ \tilde{g} \to t\bar{b}\widetilde{W}_1 + c.c & 26.8\% \\ \tilde{g} \to t\bar{b}\widetilde{W}_2 + c.c. & 13.9\% \end{array}$

Apply jet cuts: $n(jets) \ge 7$ $n(b - jets) \ge 2$

- **b-tagging**: 60% of jets that contains B-meson with $p_T(B) > 15$ GeV and $|\eta(B)| < 1.5$ with $E_T(j) > 50$ GeV and $|\eta(j)| < 3$
 - mistag rate: interpolated between

0.7% for $E_T(j) < 100 \text{ GeV}$

2% for $E_T(j) > 250 \text{ GeV}$

PHENO 2007

SM Backgrounds

• Many SM backgrounds

process	events	σ (fb)	cuts C1 (fb)
QCD $(p_T : 50 - 100 \text{ GeV})$	10^{6}	$2.6 imes10^{10}$	-
$\mathrm{QCD}~(p_T:100-200~\mathrm{GeV})$	10^{6}	$1.5 imes 10^9$	1513.3
${ m QCD}(p_T:200-400{ m GeV})$	10^{6}	$7.3 imes 10^7$	3873.7
QCD $(p_T: 400 - 1000 \text{ GeV})$	10^{6}	$2.7 imes10^6$	486.0
QCD $(p_T: 1000 - 2400 \text{ GeV})$	10^{6}	$1.5 imes 10^4$	4.4
$W + jets; W \rightarrow e, \mu, \tau \ (p_T(W) : 100 - 4000 \text{ GeV})$	$5 imes 10^5$	$3.9 imes10^5$	1815.9
$Z + jets; Z \rightarrow \tau \overline{\tau}, \ \nu s \ (p_T(Z) : 100 - 3000 \text{ GeV})$	$5 imes 10^5$	$1.4 imes 10^5$	845.3
$tar{t}$	$3 imes 10^6$	$4.6 imes10^5$	6415.8
WW, ZZ, WZ	$5 imes 10^5$	$8.0 imes 10^4$	9.3
signal (FP5: $m_{\tilde{g}} = 1076 \text{ GeV}$)	$2 imes 10^5$	$1.2 imes 10^3$	77.5

Most trouble-some backgrounds:

top pair production & QCD jets

Gluino mass extraction

• Signal rate strongly dependent on gluino mass

Total rate uncertainties:

~3% 100 fb⁻¹ finite statistics uncertainty
15% Theory uncertainty (NLO calculation / squark decoupling)
100% Background uncertainty

Other sources of uncertainty

• Variability of μ within allowed ranges of Ω_{DM}

• Variability of $\tan \beta$:

m_0	aneta	$\sigma(C2)$ (fb)	-
4090	10	9.92	
3150	20	10.45	
3050	30	11.15	
3000	40	11.04	
2970	50	11.17	
			PHENO 2007

May 7, 2007

Leptonic signatures of FP region

- Leptons are typically soft
 - From lighter Neutralino and Chargino cascade decays
- Isolate leptonic signature by:
 - C1 cuts
 - $n(isolated \ leptons) \ge 2$
 - $n(jets) \ge 4$
 - $n(b-jets) \ge 2$
 - $-A_T > 1200 \text{ GeV}$

Neutralino decays

- Neutralino mass splitting below Z threshold in FP region
 - Dilepton invariant mass has edge
- Edge begins to appear with 100 fb⁻¹ of data
- More well defined with more data

Conclusions

- Events in Focus Point region characterized by
 - Hard events gluino pair production
 - Many jets and b-jets
 - Large Augmented effective mass
 - Soft events chargino/neutralino production
 - Many jets and leptons
 - $m_{\tilde{Z}_2} m_{\tilde{Z}_1}$ and $m_{\tilde{Z}_3} m_{\tilde{Z}_1}$ below Z resonance

• Gluino mass can be determined to 7-10% from total rate after isolating hard signal

PHENO 2007