DOGS THAT DO NOT BARK:

RIGHT-HANDED NEUTRINOS IN A SUPERSYMMETRIC WORLD

Biswarup Mukhopadhyaya

Harish-Chandra Research Institute, Allahabad, India

Questions to ask...

Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

Does SUSY with ν_R enable ν -mass and mixing generation mechanisms?

Is accelerator phenomenology of SUSY altered by the RH neutrino or its scalar partner?

Does SUSY with ν_R enable ν -mass and mixing generation mechanisms?

Does the ν_R superfield help us in explaining something more than just neutrino masses?

Canonical SUSY signals at the LHC:

$$pp \longrightarrow \tilde{g}\tilde{g}(\tilde{q}\tilde{q^*})(\tilde{q}\tilde{q}) \longrightarrow (anti)quarks + \chi_1^0\chi_1^0$$

'jets + missing p_T '

$$pp \longrightarrow \tilde{g}\tilde{g} \longrightarrow \chi_1^{\pm}\chi_1^{\pm}... \longrightarrow (anti)quarks + l^{\pm}l^{\pm}\chi_1^0\chi_1^0$$

'like-sign dileptons (LSD) + jets + missing p_T '

Must χ_1^0 be the LSP?

If the RH neutrino superfield exists, then the $\tilde{\nu}_R$ is an LSP candidate

- More favoured than the $\tilde{\nu}_L$ in a setting where
- masses evolve from a high scale
- Feeble interaction suppresses $\tilde{\nu}_R$ production
- side by side with low annihilation rate Interaction with matter suppressed– direct dark matter search limits evaded
- Bottomline: A $\tilde{\nu}_R$ -type LSP in the mass range
- O(100) GeV is consistent
- Consequence in accelerator experiments: decay chains lead to different final states

New signals at the LHC (no L-violation)

- The LSP (dominantly a $\tilde{\nu}_R$) couples to all other SUSY particles with a strength
- $\sim y_{\nu} \sim m(Dirac)_{\nu}$
- **SUSY particle production**
- \Rightarrow cascades into the next-to-lightest SUSY particle (NLSP) \Rightarrow Very slow decay of the NLSP to the LSP

- The LSP only is cosmologically stable, but the
- NLSP (maybe charged) appears stable in the
- **collider detectors**
- The signal of the 'stable' NLSP can be not missing- p_T but charged tracks
- The dog that does not bark makes its presence felt!

 $ilde{ au}_1$ (the lighter stau, dominated by $ilde{ au}_R$)

- \longrightarrow allowed over a large region
- A charged track can be seen in the muon
- chamber-kinematically differentiable
 - S. K. Gupta + BM + S K Rai, PRD, 2007

Lifetime of stau NLSP against the universal gaugino mass parameter $m_{1/2}$. $m_0=100~{\rm GeV}$, $A=100~{\rm GeV}$, $sgn(\mu)=1$.

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006....

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001...

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001... MSSM with stau-neutralino near degeneracy (co-annihilation region) S. Ambrossanio et al., 1997, Gladyshev et al., 2005, T. Jittoh et al., 2006....

Supergravity theories with gravitino LSP J. Feng et al, 2003,2004, J. Ellis et al, 2004, A. Ibarra + S. Roy, 2006.... Gauge mediated SUSY breaking with a superlight gravitino D. Dicus + S. Nandi + B. Dutta, 1997,1998, J. Feng + T. Moroi, 1998 K. Cheung et al., 1998, P. Mercadante et al., 2001... **MSSM** with stau-neutralino near degeneracy (co-annihilation region) S. Ambrossanio et al., 1997, Gladyshev et al., 2005, T. Jittoh et al., 2006.... Supergravity with $\tilde{\nu}_R$ LSP T. Ashaka + K. Ishiwata + T. Moroi, 2006, S. K. Gupta + BM + S. K. **Rai**, 2007

Jets + two muon-like stau tracks (equivalent of jets + p_T in MSSM)

Jets + dimuons + two muon-like stau tracks (equivalent of jets + dimuons + p_T in MSSM)

Differentiator: thickness of tracks, time delay, absorption in stoppers

Observation: Kinematic separation of muonic and stable stau tracks is possible at the LHC

Benchmark points in a SUGRA setting...

Parameter	Benchmark point 1	Benchmark point 2
	$m_0 = 100 \ GeV, \ m_{1/2} = 600 \ GeV$	$m_0 = 110 \ GeV, \ m_{1/2} = 700 \ GeV$
mSUGRA input	$A = 100~GeV,~sgn(\mu) = +$	$A = 100 \ GeV, \ sgn(\mu) = +$
	$\tan \beta = 30$	$\tan\beta = 10$
$ \mu $	694	810
$m_{ ilde{e_L}}, m_{ ilde{\mu}_L}$	420	486
$m_{ ilde{e_R}}, m_{ ilde{\mu}_R}$	251	289
$m_{ ilde{ u}_{eL}}, m_{ ilde{ u}_{\mu L}}$	412	479
$m_{ ilde{ u}_{ au L}}$	403	478
$m_{ ilde{ u}_{iR}}$	100	110
$m_{ ilde{ au}_1}$	187	281
$m_{ ilde{ au}_2}$	422	486
$m_{\chi_1^0}$	243	285
$m_{\chi_0^0}^{\chi_1^0}$	469	551
$m_{\chi_2^0}$	700	815
$m_{\chi_4^0}^{\chi_3^0}$	713	829
$m_{\chi^{\pm}_{1}}$	470	552
$m_{\chi^{\pm}_2}$	713	829
$m_{ ilde{g}}$	1366	1574
$m_{ ilde{u}_L}, m_{ ilde{c}_L}$	1237	1424
$m_{ ilde{u}_R}, m_{ ilde{c}_R}$	1193	1373
$m_{ ilde{d}_I},m_{ ilde{s}_L}$	1239	1426
$m_{\tilde{d}_R}^{-L}, m_{\tilde{s}_R}$	1189	1367
$m_{\tilde{t}_1}$	984	1137
$m_{ ilde{t}_2}$	1176	1365
$m_{ ilde{b}_1}$	1123	1330
$m_{\tilde{b}_2}$	1161	1358
m_{h^0}	118	118
m_{H^0}	712	941
m_{A^0}	707	935
$m_{H^{\pm}}$	717	944

Jets + two tracks: signal vs background

Kinematic distributions for the signal 2 stau₁ + (≥ 2) hard jets: (a) the transverse momentum distributions for the harder stau₁ (b) the invariant mass distribution for the stau₁ pair. The dash-dot-dash (red) histograms are for benchmark point 1 and the solid (blue) histogram for benchmark point 2. The dashed histograms show the corresponding SM background.

Jets + two tracks: signal vs background

Cuts	Background	Benchmark point 1(2)
Basic	39617	8337 (1278)
Basic $+ p_T > 350 \text{ GeV}$	5	2587 (737)

The expected number of events for the signal and background with the cuts imposed. Integrated luminosity = $30 fb^{-1}$.

Hardness cut on both tracks drastically reduces backgrounds

Jets + two μ 's + two tracks:

Distributions in the scalar sum of p_T 's of all tracks in the muon chamber.

Jets + two μ 's + two tracks:

Final States	Background	Benchmark pt. 1(2)
$2 ilde{ au}_1$ + 2 μ	83	689 (103)
$2\tilde{\tau}_1 + 2\mu + (\geq 2)$ hard jets	29	686 (103)
$2\tilde{\tau}_1 + 2\mu + (\geq 2)$ hard jets	0	553 (89)
$(\sum p_T > 600 \text{ GeV})$		

The expected number of events for the signal and background with the different cuts imposed on the selection of events. $\sum p_T$ corresponds to the scalar sum of the individual transverse momenta of the charged tracks in the muon chamber. Integrated luminosity = $30 \ fb^{-1}$.

Summary and Conclusions

- Right-handed neutrinos are not so innocent!
- They not only provide neutrino masses
 - but also affect the mysteries of the TeV scale in very novel fashions.

Summary and Conclusions

- Right-handed neutrinos are not so innocent!
- They not only provide neutrino masses

but also affect the mysteries of the TeV scale in very novel fashions.

• These dogs may not bark, but they can bite!