CKM and Tri-bimaximal MNS Matrices in a $\operatorname{SU}(5) \times{ }^{(d)} T$ Model

Mu-Chun Chen
University of California at Irvine

Based on work done in collaboration with K.T. Mahanthappa arXiv: 0705.7I4 [hep-ph]

Introduction

- Neutrino Oscillation Parameters [Circa 2006]

$$
\begin{gathered}
U_{M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\sin ^{2} \theta_{12}=0.30(0.25-0.34), \sin ^{2} \theta_{23}=0.5(0.38-0.64), \quad \sin ^{2} \theta_{13}=0(<0.028) .
\end{gathered}
$$

- Tri-bimaximal neutrino mixing:

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \quad \begin{array}{ll}
& \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2
\end{array} \quad \sin \theta_{13, \mathrm{TBM}}=0 .
$$

Tri-bimaximal Neutrino Mixing from A4

- even permutations of 4 objects (invariance group of tetrahedron)
- generated by two basic permutations: (I234)

$$
\mathrm{S}=(432 \mathrm{I}) ; \mathrm{T}=(23 \mid 4)
$$

- 4 ! $/ 2=12$ elements
- defining relations: $\quad S^{2}=T^{3}=(S T)^{3}=1$
- four in-equivalent representations: $1,1^{\prime}, 1 ", 3$
- successfully give rise to tri-bimaximal leptonic mixing:
\star lepton doublets ~ 3
* RH charged leptons: 1,1 , 1 "'
- generalization to quark sector:
* no CKM mixing -- lack of doublet representations
* mass hierarchy -- need additional U(I) symmetry

Group Theory of ${ }^{(d)} T$

- Double covering of A4
- in-equivalent representations:

$$
\text { A4: } 1,1 \text { ', } 1 ", 3
$$

 other: 2, 2', 2"

- generators:

$$
S^{2}=R, T^{3}=1,(S T)^{3}=1, R^{2}=1 \quad \begin{aligned}
& \mathrm{R}=1: 1,1,1 ", 3 \\
& \mathrm{R}=-1: 2,2,2,{ }^{\prime}
\end{aligned}
$$

- product rules:

$$
\begin{aligned}
& 1^{0} \equiv 1,1^{1} \equiv 1^{\prime}, 1^{-1} \equiv 1^{\prime \prime} \\
& 1^{a} \otimes r^{b}=r^{b} \otimes 1^{a}=r^{a+b} \quad \text { for } r=1,2 \quad a, b=0, \pm 1 \\
& 1^{a} \otimes 3=3 \otimes 1^{a}=3 \\
& 2^{a} \otimes 2^{b}=3 \oplus 1^{a+b} \\
& 2^{a} \otimes 3=3 \otimes 2^{a}=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} \\
& 3 \otimes 3=3 \oplus 3 \oplus 1 \oplus 1^{\prime} \oplus 1^{\prime \prime}
\end{aligned}
$$

The Model

- Symmetry: $\mathrm{SU}(5) \times{ }^{\left({ }^{(d)} T\right.}$
- Particle Content $10\left(Q, u^{c}, e^{c}\right)_{L} \quad \overline{5}\left(d^{c}, \ell\right)_{L}$

	T_{3}	T_{a}	\bar{F}	H_{5}	$H_{\overline{5}}^{\prime}$	Δ_{45}	ϕ	ϕ^{\prime}	ψ	ψ^{\prime}	ζ	N	ξ	η
$\mathrm{SU}(5)$	10	10	$\overline{5}$	5	$\overline{5}$	45	1	1	1	1	1	1	1	1
${ }^{(d)} T$	1	2	3	1	1	1^{\prime}	3	3	2^{\prime}	2	$1^{\prime \prime}$	1^{\prime}	3	1
Z_{12}	ω^{5}	ω^{2}	ω^{5}	ω^{2}	ω^{2}	ω^{5}	ω^{3}	ω^{2}	ω^{6}	ω^{9}	ω^{9}	ω^{3}	ω^{10}	ω^{10}
Z_{12}^{\prime}	ω	ω^{4}	ω^{8}	ω^{10}	ω^{10}	ω^{3}	ω^{3}	ω^{6}	ω^{7}	ω^{8}	ω^{2}	ω^{11}	1	1

- additional $Z_{12} \times Z_{12}^{\prime}$ symmetry:
* predictive model: number of operators as small as possible
* vacuum misalignment: neutrino sector vs charged fermion sector

The Model

$H_{5} T_{3} T_{a}$	$\begin{aligned} & \psi^{\prime}, \psi \\ & \psi \phi, \psi \phi^{\prime}, \psi^{\prime} \phi, \psi^{\prime} \phi^{\prime}, \psi^{\prime} \zeta, \psi^{\prime} N, \psi N \\ & \psi^{3}, \psi \psi^{\prime 2}, \psi \phi^{2}, \psi \phi^{\prime 2}, \psi \phi \zeta, \psi \phi^{\prime} \zeta, \psi^{\prime 3}, \psi^{\prime} \psi^{2}, \psi^{\prime} \phi^{2}, \psi^{\prime} \phi^{2}, \psi^{\prime} \phi \zeta, \psi^{\prime} \phi^{\prime} \zeta \\ & \quad \psi \phi N, \psi \phi^{\prime} N, \psi^{\prime} \phi N, \psi^{\prime} \phi^{\prime} N \end{aligned}$
	$\psi \xi, \psi^{\prime} \xi, \psi \xi^{2}, \psi \xi \phi, \psi \xi \phi^{\prime}, \psi \xi \zeta, \psi^{\prime} \xi^{2} \psi^{\prime} \xi \phi, \psi^{\prime} \xi \phi^{\prime}, \psi^{\prime} \xi \zeta, \psi \xi N, \psi^{\prime} \xi N, \psi^{\prime} \eta, \psi \phi \eta, \psi \phi^{\prime} \eta, \psi \xi \eta$, $\psi^{\prime} \phi \eta, \psi^{\prime} \phi^{\prime} \eta, \psi^{\prime} \xi \eta, \psi \eta, \psi \phi \eta, \psi \phi^{\prime} \eta, \psi^{\prime} \phi \eta, \psi^{\prime} \phi^{\prime} \eta, \psi \phi \eta, \psi \phi^{\prime} \eta, \psi^{\prime} \phi \eta, \psi^{\prime} \phi^{\prime} \eta$
$H_{5} T_{a} T_{a}$	$\begin{aligned} & \phi, \phi^{\prime} \\ & \phi^{\prime 2}, \psi^{2}, \psi^{\prime 2}, \phi \phi^{\prime}, \psi \psi^{\prime} \\ & \phi^{3}, \phi^{2} \zeta, \phi \zeta^{2}, \phi^{\prime 2} \zeta, \phi^{\prime} \zeta^{2}, \phi \phi^{\prime} \zeta, \phi \phi^{\prime 2}, \phi^{\prime} \phi^{2}, \phi N^{2}, \phi^{\prime} N^{2}, \phi^{\prime 2} N, \phi \phi^{\prime} N, \phi N \zeta, \phi^{\prime} N \zeta \end{aligned}$
	$\begin{aligned} & \xi, \xi^{2}, \xi \zeta, \xi N, \xi \eta, \xi^{2}, \xi \phi, \xi \phi^{\prime}, \xi^{3}, \xi^{2} \zeta, \xi^{2} \eta, \xi^{2} \zeta, \xi N \zeta, \xi N \eta, \xi \zeta \eta, \xi \phi^{2}, \xi \phi^{\prime 2}, \xi \phi \phi^{\prime} \\ & \xi^{2} \phi, \xi^{2} \phi^{\prime}, \xi \phi N, \xi \phi \eta, \xi \phi \zeta, \xi \phi^{\prime} N, \xi \phi^{\prime} \eta, \xi \phi^{\prime} \zeta, \phi^{2} \eta, \phi \eta^{2}, \phi \eta N, \phi \eta \zeta, \phi^{\prime} \eta^{2}, \phi^{\prime} \eta N, \\ & \phi^{\prime} \eta \zeta, \phi \eta, \phi^{\prime} \eta, \xi N^{2}, \xi \eta^{2}, \xi \zeta^{2} \end{aligned}$
$H_{\overline{5}} \bar{F} T_{3}$	$\begin{aligned} & \phi, \phi^{\prime} \\ & \psi^{2}, \phi^{2}, \phi^{\prime 2}, \phi^{\prime} \phi, \psi^{\prime 2}, \psi \psi^{\prime}, \phi^{\prime} \zeta, \phi^{\prime} N, \phi N \\ & \phi^{3}, \phi^{\prime 3}, \phi^{2} \phi^{\prime}, \phi \phi^{\prime 2}, \phi \zeta^{2}, \phi^{\prime} \zeta^{2}, \phi \psi^{2}, \phi^{\prime} \psi^{\prime 2}, \zeta \psi^{2}, \zeta \psi^{\prime 2}, \phi^{\prime} \psi^{2}, \phi \psi^{2}, \\ & \quad \phi N^{2}, \phi^{\prime} N^{2}, \phi N \zeta, \phi^{\prime} N \zeta, N \psi^{2}, \zeta \psi^{2}, \zeta \psi \psi^{\prime}, N \psi \psi^{\prime} \end{aligned}$
	$\begin{aligned} & \xi, \xi^{2}, \xi N, \xi \zeta, \xi \eta, \xi \phi, \xi \phi^{\prime}, \xi^{3}, \xi^{2} N, \xi^{2} \zeta, \xi^{2} \eta, \xi^{2} \phi, \xi^{2} \phi^{\prime}, \xi \phi^{2} \\ & \quad \xi \phi^{\prime 2}, \xi \phi \phi^{\prime}, \xi \phi N, \xi \phi \zeta, \xi \phi \eta, \xi \phi^{\prime} N, \xi \phi^{\prime} \zeta, \xi \phi^{\prime} \eta, \phi^{\prime} \eta, \phi \eta^{2}, \phi \eta N, \phi \eta \zeta, \phi^{\prime} \eta^{2}, \phi^{\prime} \eta N, \phi^{\prime} \eta \zeta, \eta \psi^{2}, \\ & \eta \psi^{\prime 2}, \phi \eta, \phi \eta N, \phi \eta \zeta, \phi^{\prime} \eta^{2}, \phi^{\prime} \eta N, \eta \psi \psi^{\prime} \end{aligned}$
$H_{\overline{5}}^{\prime} \bar{F} T_{a}$	$\begin{aligned} & \psi, \psi^{\prime} \\ & \psi \phi^{\prime}, \psi^{\prime} \phi, \psi^{\prime} \phi^{\prime}, \phi \psi \\ & \psi \phi^{2}, \psi \phi \zeta, \psi^{\prime} \phi \zeta, \psi \phi^{\prime 2}, \psi^{\prime} \phi^{2}, \psi \phi \phi^{\prime}, \psi^{\prime} \phi \phi^{\prime}, \psi \phi^{\prime} \zeta, \psi^{\prime} \phi^{\prime} \zeta, \psi \phi N, \psi^{\prime} \phi N, \psi \phi^{\prime} N, \psi^{\prime} \phi^{\prime} N \end{aligned}$
	$\psi \xi, \psi^{\prime} \xi, \psi \xi^{2}, \psi^{\prime} \xi^{2}, \psi \xi \phi, \psi \xi \phi^{\prime}, \psi^{\prime} \xi \phi, \psi^{\prime} \xi \phi^{\prime}$, $\psi \xi N, \psi \xi \eta, \psi \xi \zeta, \psi^{\prime} \xi \zeta, \psi^{\prime} \xi \eta, \psi^{\prime} \xi N, \psi \phi \eta, \psi^{\prime} \phi \eta, \psi^{\prime} \phi^{\prime} \eta, \psi \phi^{\prime} \eta, \psi^{\prime} \phi^{\prime} \eta, \psi \phi \eta, \psi^{\prime} \phi \eta$

The Model

- Abelian subgroups of ${ }^{(d)} \mathrm{T}$:

$$
\begin{aligned}
Z_{3}: & G_{\mathrm{T}} \\
Z_{4}: & G_{\mathrm{TST}^{2}} \\
& \omega=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad T S T^{2}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \\
& =e^{2 \pi i / 3}
\end{aligned}
$$

- (d) \top breaking:

$$
\begin{array}{cc}
{ }^{(d)} T \longrightarrow G_{\mathrm{TST}^{2}}: & \langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left\langle\phi^{\prime}\right\rangle=\phi_{0}^{\prime} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
{ }^{(d)} T \longrightarrow G_{\mathrm{T}}: & \langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\langle\psi\rangle=\psi_{0} \Lambda\binom{1}{0} \\
{ }^{(d)} T \longrightarrow \text { nothing : } & \left\langle\psi^{\prime}\right\rangle=\psi_{0}^{\prime} \Lambda\binom{1}{1} \\
{ }^{(d)} T \longrightarrow G_{\mathrm{S}}: & \langle\zeta\rangle=\zeta_{0}, \quad\langle N\rangle=N_{0} \\
{ }^{(d)} T-\text { invariant }: & \langle\eta\rangle=u
\end{array}
$$

The Model

- Lagrangian: only 9 operators allowed!!

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Yuk}} & =\mathcal{L}_{\mathrm{TT}}+\mathcal{L}_{\mathrm{TF}}+\mathcal{L}_{\mathrm{FF}} \\
\mathcal{L}_{\mathrm{TT}} & =y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} y_{t s} H_{5} T_{3} T_{a} \psi \zeta+\frac{1}{\Lambda^{2}} y_{c} H_{5} T_{a} T_{a} \phi^{2}+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{a} \phi^{3} \\
\mathcal{L}_{\mathrm{TF}} & =\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi N+y_{d} H_{\overline{5}}^{\prime} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right] \\
\mathcal{L}_{\mathrm{FF}} & =\frac{1}{M_{x} \Lambda}\left[\lambda_{1} H_{5} H_{5} \bar{F} \bar{F} \xi+\lambda_{2} H_{5} H_{5} \bar{F} \bar{F} \eta\right],
\end{aligned}
$$

Neutrino Sector

- Operators: $\quad \mathcal{L}_{\mathrm{FF}}=\frac{1}{M_{x} \Lambda}\left[\lambda_{1} H_{5} H_{5} \bar{F} \bar{F} \xi+\lambda_{2} H_{5} H_{5} \bar{F} \bar{F} \eta\right]$
- Symmetry breaking:

$$
{ }^{(d)} T \longrightarrow G_{\mathrm{TST}^{2}}: \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad{ }^{(d)} T-\text { invariant }: \quad\langle\eta\rangle=u
$$

- Resulting mass matrix:

$$
\begin{gathered}
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \\
V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}} \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
\end{gathered}
$$

Up Quark Sector

- Operators: $\quad \mathcal{L}_{\mathrm{TT}}=y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} y_{t s} H_{5} T_{3} T_{a} \psi \zeta+\frac{1}{\Lambda^{2}} y_{c} H_{5} T_{a} T_{a} \phi^{2}+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{a} \phi^{\prime 3}$
- top mass: allowed by ${ }^{(d)} T$
- lighter family acquire masses thru operators with higher dimensionality
\Rightarrow dynamical origin of mass hierarchy
- symmetry breaking:

$$
{ }^{(d)} T \longrightarrow G_{\mathrm{T}}: \quad\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad{ }^{(d)} T \longrightarrow G_{\mathrm{TST}^{2}}: \quad\left\langle\phi^{\prime}\right\rangle=\phi_{0}^{\prime} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- Mass matrix:

$$
M_{u}=\left(\begin{array}{ccc}
i \phi_{0}^{\prime 3} & \frac{1-i}{2} \phi_{0}^{\prime 3} & 0 \\
\frac{1-i}{2} \phi_{0}^{\prime 3} & \phi_{0}^{\prime 3}+\left(1-\frac{i}{2}\right) \phi_{0}^{2} & y^{\prime} \psi_{0} \zeta_{0} \\
0 & y^{\prime} \psi_{0} \zeta_{0} & 1
\end{array}\right) y_{t} v_{u}
$$

Down Quark Sector

- operators: $\quad \mathcal{L}_{\mathrm{TF}}=\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi N+y_{d} H_{\overline{5}}^{\prime} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right]$
- generation of b-quark mass: breaking of (d) T : dynamical origin for hierarchy between m_{b} and m_{t}
- lighter family acquire masses thru operators with higher dimensionality
\longrightarrow dynamical origin of mass hierarchy
- Georgi-Jarlskog relations: $\quad m_{\mu} \simeq 3 m_{s} \quad m_{d} \simeq 3 m_{e}$
- symmetry breaking:
${ }^{(d)} T \longrightarrow G_{\mathrm{T}}: \quad\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad\langle\psi\rangle=\psi_{0} \Lambda\binom{1}{0} \quad{ }^{(d)} T \longrightarrow$ nothing $:\left\langle\psi^{\prime}\right\rangle=\psi_{0}^{\prime} \Lambda\binom{1}{1}$
- mass matrix:

$$
M_{d}=\left(\begin{array}{ccc}
0 & (1+i) \phi_{0} \psi_{0}^{\prime} & 0 \\
-(1-i) \phi_{0} \psi_{0}^{\prime} & \psi_{0} N_{0} & 0 \\
\phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0}, \quad M_{e}=\left(\begin{array}{ccc}
0 & -(1-i) \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} \\
(1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} N_{0} & \phi_{0} \psi_{0}^{\prime} \\
0 & 0 & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0}
$$

Quark and Lepton Mixing Matrices

- CKM mixing matrix:

$$
\begin{gathered}
M_{u}=\left(\begin{array}{ccc}
i \phi_{0}^{\prime 3} & \frac{1-i}{2} \phi_{0}^{\prime 3} & 0 \\
\frac{1-i}{2} \phi_{0}^{\prime 3} & \phi_{0}^{\prime 3}+\left(1-\frac{i}{2}\right) \phi_{0}^{2} & y^{\prime} \psi_{0} \zeta_{0} \\
0 & y^{\prime} \psi_{0} \zeta_{0} & 1
\end{array}\right) y_{t} y_{t} v_{u} \quad M_{d}=\left(\begin{array}{ccc}
0 & (1+i) \phi_{0} \psi_{0}^{\prime} & 0 \\
-(1-i) \phi_{0} \psi_{0}^{\prime} & \psi_{0} N_{0} & 0 \\
\phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0}, \\
\theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}},
\end{gathered}
$$

- MNS matrix:
$M_{e}=\left(\begin{array}{ccc}0 & -(1-i) \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} \\ (1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} N_{0} & \phi_{0} \psi_{0}^{\prime} \\ 0 & 0 & \zeta_{0}\end{array}\right) y_{b} v_{d} \phi_{0} \longrightarrow \theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3} \sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3} \theta_{c}$
$U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}1 & -\theta_{c} / 3 & * \\ \theta_{c} / 3 & 1 & * \\ * & * & 1\end{array}\right)\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
$\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, \mathrm{TBM}}-\frac{1}{2} \theta_{c} \cos \beta$
$\theta_{13} \simeq \theta_{c} / 3 \sqrt{2}$
leptonic CPV

Numerical Results

- Experimentally: $m_{u}: m_{c}: m_{t}=\epsilon_{u}^{2}: \epsilon_{u}: 1, \quad m_{d}: m_{s}: m_{b}=\epsilon_{d}^{2}: \epsilon_{d}: 1$

$$
\epsilon_{u} \simeq(1 / 200)=0.005 \quad \epsilon_{d} \simeq(1 / 20)=0.05 .
$$

- Model Parameters:

$$
\begin{gathered}
M_{u}=\left(\begin{array}{ccc}
i g & \frac{1-i}{2} g & 0 \\
\frac{1-i}{2} g & g+h & k \\
0 & k & 1
\end{array}\right) y_{t} v_{u} \\
h \equiv y^{\prime} \psi_{0} \zeta_{0}=-0.032 \\
\\
\frac{M_{d}}{y_{b} v_{d} \phi_{0} \zeta_{0}}=\left(\begin{array}{ccc}
0 & (1+i) b & 0 \\
-(1-i) b & c & 0 \\
b & b & 1
\end{array}\right) \\
\phi_{0}^{\prime 3}=-2.25 \times 10^{-5}
\end{gathered}
$$

7 parameters in charged fermion

- Mixing Matrices:

$$
\left|V_{\mathrm{CKM}}\right|=\left(\begin{array}{ccc}
0.976 & 0.217 & 0.00778 \\
0.216 & 0.975 & 0.040 \\
0.015 & 0.0378 & 0.999
\end{array}\right) \quad\left|U_{\mathrm{MNS}}\right|=\left|V_{e, L}^{\dagger} U_{\mathrm{TBM}}\right|=\left(\begin{array}{ccc}
0.838 & 0.545 & 0.0550 \\
0.364 & 0.608 & 0.706 \\
0.409 & 0.578 & 0.706
\end{array}\right)
$$

- neutrino masses:

$$
u=-1.87 \times 10^{-2}, \quad \xi_{0}=1.15 \times 10^{-2}, \quad M_{x} \sim 10^{14} \mathrm{GeV}
$$

Conclusions

- $\quad S U(5) x^{(d)} \top$ symmetry: tri-bimaximal lepton mixing \& realistic CKM matrix
- $Z_{12} \times Z_{12}$ symmetry: only 9 operators present (only 9 parameters in Yukawa sector)
* forbid proton decay
* likely linked to orbifold compactification
- dynamical origin of mass hierarchy (including m_{b} vs m_{t})
- interesting sum rules:

$$
\tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, \mathrm{TBM}}-\frac{1}{2} \theta_{c} \cos \beta
$$

right amount to account for discrepancy bt exp best fit value and TBM prediction

$$
\theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \sim 0.05
$$

