

higgst xtra Simensions strong composite and interior technicolor,) extra gauget bosons NOK. (P violation Little Higgs MSSN extra singlets Rp violation etha p epresentatio from CPNSH website

Signatures in the Electroweak Symmetry Breaking Sector

Shufang Su • U. of Arizona

Phenomenology Symposium 2007

Outline

What I will and will not to cover EWSB scenarios and its signatures

The difficult question

What I Will and Will Not Cover?

Will not discuss

Will focus on

- Scenarios do not directly related to EWSB and (little) Hierarchy
 UED, split SUSY, GUT, ...
- Indirect signatures: effects in precision measurements
- Higgs properties

- Recent developments
- Direct search signatures @ LHC
- try to be as model independent as possible
 - particle directly related to the cancellation of quadratic divergence
 - particles essential to the scenario
 - minimum (vanilla) model (might not be the best model)

you always hear people say

" If there is supersymmetry, we can observe it at the LHC."

you always hear people say "If there is supersymmetry, we can observe it at the LHC."

... as stop can not be too heavy and it is strong interacting.

you always hear people say "If there is supersymmetry, we can observe it at the LHC."

... as stop can not be too heavy and it is strong interacting.

 \bullet cancellation of Λ^2 only need H-H-t-t coupling relate to top Yukawa

• stop does <u>NOT</u> have to charge under the SM SU(3)c.

you always hear people say " If there is supersymmetry, we can observe it at the LHC."

... as stop can not be too heavy and it is strong interacting.

 \bullet cancellation of Λ^2 only need H-H-t-t coupling relate to top Yukawa

• stop does <u>NOT</u> have to charge under the SM SU(3)c.

Burdman, Chacko, Goh and Harnik, hep-ph/0609152

folded SUSY

<u>Collider signature</u>

Large Extra Dimensions

Arkani-Hamed, Dimopopulos, Dvali, hep-ph/9803315

$$\begin{split} \hline M_*^{n+2}R^n &= M_{pl}^2 \\ \hline \mathbf{\Lambda}_*^{\text{TeV}} &= M_{pl}^2$$

M∗ ~ TeV	δ=1	δ=2	δ=3	δ=4	δ=5	δ=6
R (m)	3E13	2E-3	1E-8	2E-11	5E-13	4E-14
1/R (GeV)	6E-30	8E-14	2E-8	9E-6	4E-4	4E-3

...

- gravity live in δ +4 dimensions
- massless mode: 4D graviton
 massive mode: KK tower of graviton

m_G^{KK}= n/R, n=1,2,... small mass splitting

ADD

 $)^2$

Single Jet/Photon + MET

• <u>KK graviton</u>: appear as missing Et

ADD

• <u>Signatures</u>: Single gluon/photon + large missing Et

ADD

Virtual Graviton Exchange in $2 \rightarrow 2$ scattering

- deviations in SM process with difermions
- new production process absent in SM at tree level, e.g. $gg \rightarrow I^+I^-$

Black Hole Production ADD black hole parton 4-D spacetime 4-D spacetime \bigotimes Semi-classical approach: $\sigma(M_{\rm BH}) = \pi r_{s(4+n)}^2$ $M_D \sim 2 \text{ TeV}, \sigma \sim pb$

from Albert De Roeck

<u>Signatures:</u>

- high multiplicity of final state particles
- spherical distribution

Dominant background: QCD jets, top, boson+jets,

CMSTDR

Little Higgs

Little Higgs Models

for review, see Perelstein, hep-ph/0512128; Schmaltz and Tucker-Smith, hep-ph/0502182;

- Higgs is a Goldstone boson of spontaneous global symmetry breaking
- obtain mass from interactions explicitly breaking global symmetry
 - gauge interaction, Yukawa interaction
- 1-loop quadratic divergence protected via collective symmetry breaking

```
e.g. Littlest Higgs model
global symmetry: SU(5) → SO(5)
gauge symmetry: [SU(2)XU(1)]<sup>2</sup>→[SU(2)XU(1)]<sub>SM</sub>
```

• Higgs mass is zero if either of the gauge coupling is zero.

• One loop contribution is at most logarithmically divergent.

Good for Λ up to about 10 TeV

New particles:

- New gauge bosons: W_H, Z_H, A_H
- New heavy quarks: T, ...

masses ~ TeV

• Extra Higgses

Little Higgs Heavy Top in Littlest Higgs Model

Heavy top production

Han, McElrath, Logan, Wang, hep-ph/0301040

20

Signatures in the LH Models

$$\Gamma(T \to tZ) = \Gamma(T \to t \ h) = \frac{1}{2}\Gamma(T \to bW) = \frac{\kappa_T^2}{32\pi}M_T \qquad \qquad \kappa_T = \lambda_1^2/\sqrt{\lambda_1^2 + \lambda_2^2}$$

Azuelos et. al., hep-ph/0402037

S. Su

Little

Signatures in the LH Models

Azuelos et. al., hep-ph/0402037

S. Su

Little

Signatures in the LH Models

Little

Heavy Guage Bosons in LH

<u>Signatures:</u>

Little

- Drell-Yan production
- Decays into dilepton, dijets, dibosons

Diboson signals

Little

- EWPT \Rightarrow f large
- T-parity (similar to R-parity in SUSY)
 - contribution to SM process only appears at loop level, allow small f
- T-odd partners for SM particles (T-quarks, T-leptons, ...)
- lightest T-odd particle: stable, most likely, AH
- SUSY-like signals

	even	odd
New gauge bosons		Ан (LTP) Wн, Zн
New heavy quarks	T₊	T. q.,l.

However, as C. Hill and R. Hill told us yesterday, T-parity is broken by topological effects ...

Twin Higgs mechanism

Chacko, Goh, Harnik, hep-ph/0506256 Chacko, Nomura, Papucci, Perez, hep-ph/0510273 Chacko, Goh, Harnik, hep-ph/0512088

Higgs as pseudo-Goldstone boson of a global symmetry Its mass is protected against radiative correction via discrete symmetry

e.g., left-right Twin Higgs Models

Twin

- * Global U(4) , with subgroup $SU(2)_L \times SU(2)_R \times U(1)_{B\text{-}L}$ gauged
- Left-right symmetry: $g_L = g_R (y_L = y_R)$

Twin Higgs mechanism

Quadratic divergence forbidden by left-right symmetry $\Delta V = \frac{9}{64\pi^2} g_L^2 \Lambda^2 H_L^{\dagger} H_L + \frac{9}{64\pi^2} g_R^2 \Lambda^2 H_R^{\dagger} H_R$ $g_L = g_R = g$

$$\Delta V = \frac{9}{64\pi^2} g^2 \Lambda^2 (H_L^{\dagger} H_L + H_R^{\dagger} H_R) = \frac{9}{64\pi^2} g^2 \Lambda^2 H^{\dagger} H_R$$

 $m_{\rm H} \sim g^2 f / (4 \pi)$, natural for $f \sim TeV$

Little

• Heavy top: t_H

Single production $t_{\rm Hj}$

t_H→ bΦ[±]→bbt→bbblv

Heavy gauge bosons: W_H, Z_H

- Drell-Yan production
- Decays into dilepton, dijets (similar to LR model)
- **–** $Z_H \rightarrow tt, W_H \rightarrow tb, ...$

New particles: KK tower of graviton

Interactions:
$$\mathcal{L} = \frac{-1}{\overline{M}_{Pl}} T^{\mu\nu}(x) h^{(0)}_{\mu\nu}(x) - \frac{1}{\Lambda_{\pi}} T^{\mu\nu}(x) \sum_{n=1}^{\infty} h^{(n)}_{\mu\nu}(x).$$

<u>Ads/CFT dual:</u> Higgs in TeV brane @5D ⇔ composite Higgs @4D

<u>Collider signature:</u> resonance in dilepton, dijet, diboson, tt

Agashe, Delgado, May and Sundrum, hep-ph/0308036

Agashe, Delgado, May and Sundrum, hep-ph/0308036

KK graviton

• couple strongly to H, t_R, V_{KK} (composite fields)

• less to light quarks, leptons (fundamental fields)

<u>Signatures:</u> resonance in tt, diboson

Fitzpatrick, Kaplan, Randall and Wang, hep-ph/0711150

 $gg \rightarrow G^1 \rightarrow ZZ \rightarrow 4I, L=300 \text{ fb}^{-1}$

$c \equiv k/\bar{M}_P$	0.5	1.0	1.5	2.0
m_1^G (TeV)	< 1.5	1.6	1.9	2.2
S/\sqrt{B}	—	7.0	6.1	6.1

RS

33 Agashe, Davoudiasl, Perez and Soni, hep-ph/0701186

<u>New particles:</u> KK gluon

Signatures: resonance in tt

Lillie, Randall and Wang, hep-ph/0701166

Similar to QCD chiral symmetry breaking ...

- new non-abelian gauge symmetry: Technicolor
- additional massless fermions: technifermion
- formation of techifermion condensate break electroweak symmetry

<u>New particles</u>

• color singlet sector: spin 0 π_{TC} , spin 1 ρ_{TC} , etc.

Technicolor

<u>Signature</u>

diboson resonance

37

ATLAS TDR

S. Su

Csaki, Grojean, Murayama, Pilo, Terning Chivukula, He, Kurachi, Simmons, Tanabashi, Matsuzaki; Foadi, Gopalkrishna, Schmidt (deconstruction) Georgi

Inspired by deconstruction, warped extra dimension ...

Unitarity

No Higgs $\Rightarrow \mathcal{O}(E^2) \Rightarrow E < \sqrt{8\pi}v \simeq 1.2 \,\mathrm{TeV}$

From S. Chivukula

- electroweak symmetry is broken by boundary conditions
- Unitarity fixed by exchange of KK tower of gauge boson

Higgsless

Chivukula, He, Kurachi, Simmons, Tanabashi, Matsuzaki

• Unitarity fixed by exchange of extra gauge boson

Higgsless

<u>New particles:</u> Massive gauge bosons

<u>Signatures:</u> VBF → diboson resonance

<u>New particles:</u> Massive gauge bosons

<u>Signatures:</u> VBF → diboson resonance

Backup Slides

Single Photon + MET

single photon, 740

KK graviton bremsstrahlung

$$\sigma \sim \frac{1}{M_{\text{Planck}}^2} (ER)^n \sim \frac{1}{M_*^2} (EM_*)^n$$

Signal: Single photon + large missing ET

Dominant background: ZY, W, WY, Y+jets, QCD, diy, Z+jets

MD=2.5 TeV, n=2, L=30fb⁻¹

Black Hole Production

For 10 fb⁻¹

• Classical approximation to cross-section: large! Black Holes up to 8-10 TeV

•Apparent horizon (AH), not all energy trapped; see eg. hep-ph/0609055 Black holes up to 4-5 TeV

Dijets with large Mjj

Elastic scattering in transplanckian region with small momentum transfer

Signal: dijets with large M_{jj}

jet-jet production at small angle with large center of mass energy

Giudice, Rattazzi and Wells, hep-ph/0112161

$$\lambda_1(iQht_r + fT_Lt_r - \frac{1}{2f}T_Lt_rhh^{\dagger}) + \lambda_2f(T_LT_R)$$

Mass eigenstates: T and tSM parameters: f, λ_1 , $\lambda_1 \rightarrow mt$, mT, λ_1/λ_2

$$\Gamma(T \to tZ) = \Gamma(T \to t \ h) = \frac{1}{2}\Gamma(T \to bW) = \frac{\kappa_T^2}{32\pi}M_T \qquad \kappa_T = \lambda_1^2/\sqrt{\lambda_1^2 + \lambda_2^2}$$

Azuelos et. al., hep-ph/0402037

ATLAS
$$\Gamma(T \to tZ) = \Gamma(T \to t \ h) = \frac{1}{2}\Gamma(T \to bW) = \frac{\kappa_T^2}{32\pi}M_T$$

 $\kappa_T = \lambda_1^2/\sqrt{\lambda_1^2 + \lambda_2^2}$

 $T \rightarrow t Z \rightarrow I+I-Ivb$, with leptonic decay of Z and W

3 high pt leptons, one b-tagging, and large MET

0405156

ATLAS
$$\Gamma(T \to tZ) = \Gamma(T \to t \ h) = \frac{1}{2}\Gamma(T \to bW) = \frac{\kappa_T^2}{32\pi}M_T$$

 $\kappa_T = \lambda_1^2/\sqrt{\lambda_1^2 + \lambda_2^2}$

$T \rightarrow Wb$, with leptonic decay of Z and W

one high pt leptons, two jets (one b-tagging), and large MET BG: Wbb, tt, single top

$$\lambda_1 = \lambda_2 = 1.$$

5 σ reach for 300 fb⁻¹, λ₁/λ₂ =1(2) mT< 2000 (2500) GeV

0405156

52

ATLAS
$$\Gamma(T \to tZ) = \Gamma(T \to t h) = \frac{1}{2}\Gamma(T \to bW) = \frac{\kappa_T^2}{32\pi}M_T$$
 5 σ reachs
 $\kappa_T = \lambda_1^2/\sqrt{\lambda_1^2 + \lambda_2^2}$ 150 fb⁻¹

$T \rightarrow ht$, with h->bb, with leptonic decay of Z and W

Heavy Guage Boson in the Littlest Higgs

WH, ZH, AH arise from $[SU(2)\otimes U(1)]2 \rightarrow SU(2)\otimes U(1)$ 2 mixing angles: θ for ZH, θ' for AH ZH \rightarrow ee, $\mu\mu$ rise with cot θ to about 4%

S. Su

WH \rightarrow ev, $\mu\nu$ (slightly better)

S. Su

AH

56

LH

-

300 fb-1

Heavy top t_H production

Heavy top t_H production

Heavy top t_H decay

Heavy top t_H decay

Heavy top t_{H} decay

S. Su

W_H decay

• W_H (m_{vR} > m_{WH})

• $W_H (m_{vR} < m_{WH}), W_H \rightarrow I v_R, Br \sim 9\%$

W_H decay

• $W_H (m_{vR} > m_{WH})$ 10[°] u D. c S t_HB WH decay branching ratio 10⁻¹ $\phi^{0}\phi^{\pm}$ 10⁻²⊧ cD, uS t B 10^{-3|} сΒ $H_{SM}^{}\varphi^{\!\pm}$ 10⁻⁴∟ 1000 3000 M_{WH} (GeV) 2000 4000 5000

 $t_H \rightarrow b\phi^{\pm}: 4b + 1 \text{ lepton + missing } E_T$

 $t_H \rightarrow bW$: 2b + 1 lepton + missing E_T

 $t_H \rightarrow tZ$: 2b + 3 lepton + missing E_T

• $W_H (m_{vR} < m_{WH}), W_H \rightarrow I v_R, Br \sim 9\%$

Randall-Sundrum

<u>Collider signature:</u> resonance in drell-yan and dijets

Hewett, Spirolulu, hep-ph/0205156

gg->G1->tt

Fitzpatrick, Kaplan, Randall and Wang, hep-ph/0711150

62

Focus of This Talk

S. Su

63

Focus of This Talk

technicolor: leptons or lepton+ jets ATL-PHYS-99-020

Case	$\mathbf{m} \rho_{\mathbf{T}}$ (GeV)	mπ _T (GeV)	Γρ _Τ (GeV)	BR (ρ _T → WZ)
(a)	220	110	0.93	0.13
(e)		110	67	0.014
(b)	500	300	4.5	0.21
(f)		500	1.1	0.87
(g)		110	130	0.013
(d)		250	77	0.022
(h)	800	300	52	0.032
(c)		500	7.6	0.22

Focus of This Talk

L=30fb-1

technicolor: leptons or lepton+ jets

ATLAS TDR

$\rho_{TC} \rightarrow \pi_{TC} Z \rightarrow bqll$

Mind

	case (b): m(ρ _T)=500, m(π _T)=300 GeV	case (c): m(ρ _T)=800, m(π _T)=500 GeV	case (d): m(ρ _T)=800, m(π _T)=250 GeV
Number of events	115/148/17	48/43/2	11.5/49/0
S / \sqrt{B}	8.9	7.1	1.6
$\sigma x BR model$	0.104	0.018	0.0059
σ x BR for 5σ	0.058	0.013	0.018

600000

Technicolor

		0				
		case (b) m(ρ _T)=500, m(π _T)=300 GeV	case (c) m(ρ _T)=800, m(π _T)=500 GeV	case (d) m(ρ _T)=800, m(π _T)=250 GeV		
blv	Number of events	86/165/5	24/118/10	12/5/0		
	S/\sqrt{B}	3 6.6	2.1	5.3		
-	σ x BR (pb), model	0.336	0.064	0.021		
	σ x BR (pb), 5σ	0.255	0.15	0.02		

$\rho_{\text{T}c} \rightarrow \, \pi_{\text{T}c} \, W \, \rightarrow \, \text{bblv}$

	m	bb	p _{Tmin} (b ₁ /	b ₂)	p _{T3} (max)	₀_m (GeV)	σ x BR (5 σ) (pb)
	300		75/75		100	37	13
ns→ pp	50	00	180/50		50	60	7.0
	10	000	200/100)	100	70	0.57
	2000		300/200)	100	160	0.11
	m(<i>tī</i>)	Г(<i>tī</i>)	σ × BR [pb]				
n ++ -) y h i i	[GeV]	[GeV]	$10~{ m fb^{-1}}$	100 fb -1			
	500	57	17.0	5.5			
	750	107	12.0	3.8			
	1000	152	5.0	1.6			
-		-	~	-			
					<i>m</i> (ω ₇)= 500 GeV		<i>m</i> (ω ₇)=800 GeV
		Number	of events		612/105		174/24
$ω_{TC} \rightarrow \pi_{TC} \gamma \rightarrow bb'$	S/\sqrt{B}			60		35	
	$\sigma \times BR$ (pb), model				0.161		0.033
	$\sigma \times BR$ (pb) 5σ			0.013		0.0046	

VBF with $\rho_{TC} \rightarrow \pi_{TC} W \rightarrow bblv$, complementary to qq fusion, not discovery channel unless 10 fb

S. Su