Path from the LHC to the New Standard Model via On-Shell Effective Theories

Nima Arkani-Hamed

Harvard - Philip Schuster, Natalia Toro Berkeley - Jesse Thaler Princeton - Lian-Tao Wang MIT - Bruce Knuteson FNAL - Steve Mrenna SLAC - Johan Alwall CERN - Michelangelo Mangano ww.marmoset-mc.net hep-ph/0703088

Collective Hadron Collider Discovery Experience

No undetermined parameters

One unknown parameter (m_t)

T,

In both cases, knew **exactly** what to look for...

Characterizing New Physics Only a few dynamical variables control the essential phenomenology of new physics at hadron colliders.

Characterizing new physics directly in terms of these variables permits a simple, accurate parametrization of almost **any** model of new physics —

an On-Shell Effective Theory.

Only with this information can we tackle the fundamental questions:

What new physical principles are being revealed at the TeV scale?

Is nature supersymmetric?

Is the electroweak scale natural?

Suppose we have "interesting" events clearly inconsistent with the SM

How do we characterize "interesting" events?

The "composite sketch" approach

Exploit an effective description: Throw out irrelevant info Characterize topology and kinematics

Close connection to Lagrangian, but far simpler

Use On-Shell Effective Theories (OSET) Fast, accurate, transparent characterization and discrimination among possibilities

Ask good questions about the data early in the analysis process

What's an OSET? The Basic Idea:

Simple rules given for these parts

Example: Top Quark Masses, Rates, and Topology vs. Amplitudes **Dominant Top Properties:** $\sigma(qq \to t\bar{t})$ $Br(t \rightarrow bW)$ m_t, m_W, m_b **Detailed Top Properties:** W helicity $d\sigma/d\hat{t}$ t charge

What's an OSET? Complicated Case

OSET Rules: Modeling Production

$$\begin{split} q & \tilde{q} & \tilde{\chi}_1 & q \\ g & \tilde{q} & q \\ g & \tilde{g} & \tilde{\chi}_1 & q \\ \tilde{g} & \tilde{\chi}_1 & \tilde{\chi}_1 & g \\ \tilde{\chi}_1 & \tilde{\chi}_1 & \tilde{\chi}_1 & \tilde{\chi}_1 & g \\ \tilde{\chi}_1 & \tilde{\chi}_1 & \tilde{\chi}_1 & \tilde{\chi}_1 & \tilde{\chi}_1 & g \\ \tilde{\chi}_1 & \tilde{\chi$$

Monte Carlo
compare to data

(do kinematics right!)

$2 \rightarrow 2$ Folk Theorem

$$\mathcal{M}|^2 = f(s,\xi) \qquad \xi = \beta_{34}\cos\theta = \frac{\hat{t} - \hat{u}}{\hat{s}} = \frac{p_z}{\sqrt{s}}$$

Cross Sections Dominated by Thresholds!

Counts

This is not very surprising...

What about extreme kinematics?

What about corrections?

Parton Luminosty

CM rapidity integrated

$$\rho_{PDF} \sim \tau^a \log(\frac{1}{\tau})$$

How much matrix element structure survives PDF convolution?

 $\sim |M|^2 \sim X^q \xi^p$

Threshold Suppression

-Threshold Suppression

gg Initial States

 $\sim |M|^2 = \sum_{p,q} C_{pq} X^p \xi^q$

 $\sum \sim |M|^2 \sim X^q \xi^p$

Only near-threshold behavior survives

$\sum \sim |M|^2 \sim X^q \xi^p \qquad \xi \text{-Independence of Transverse Shape!}$

Shape Invariance

PDF E_{cm} and y_{cm} homogeneity properties Inclusive p_T shape invariant under: $|M|^2 \to |M|^2 \xi^m$

Inclusive y_{lab} shape invariant under: $|M|^2 \rightarrow |M|^2 X^n$

Simple "Universal" corrections to constant ME! Messy collider environment turned to our advantage

Correct PDFs necessary

 $\sim |M|^2 \sim X^q \xi^p$

Caveats: Large final state mass asymmetry requires care

Transverse momentum-rapidity correlations not included beyond phase space

Defining an OSET

Production:

 $2 \rightarrow 3$ Use "standard" modes with OSET decay scheme

Decay:

- Polynomial in $\cos \theta$: rank determined by spins, coefficients by masses. Spin correlations can be included.
- Single-object lab-frame distributions well approximated by phase space decays.
 See: hep-ph/0703088 for detail...

"Normal" Behavior

"Contact" Operator Behavior

Why Monte-Carlo an OSET?

• MODEL: Fast, sufficiently accurate event generation for your favorite model

 DATA: Check consistency of partial interpretations of candidate new-physics signals

MARMOSET

Mass and Rate Modeling in On-Shell Effective Theories

- Masses and SU(3) and U(1) quantum numbers of new particles, their production and decay modes fully specify model
- An OSET implies many topologies, and Monte Carlo is generated separately for each
- Topologies can be combined by weighting according to hadronic cross-sections and decay branching fractions

"offline" reweighting of MC → **fast**! scan models by simulating coarsely spaced mass points

OSETs have predictive power!

MARMOSET: Simple Monte Carlo for Any Model Rate Scanning by **Coarse Mass Reweighting Existing** Scanning Monte Carlo VS.

Lagrangian Simulation

Intricate dependence of σ , Br on many Lagrangian parameters demands fine scanning of all of them.

correlations between them constrain OSET OSET constrains and motivates new physics Lagrangian

Use OSET MC like a "think-pad"

The Michigan Black Box Ist and 2nd LHC Olympics

Signatures are quite simple... visible in many searches how do you combine results? what params reproduce them?

Where do you see it?

First discovery in 1lepton+jets+MET search? 2l+jets+MET?

Signal in bb+jets+MET, jets+MET

(with unrealistic detector, we've seen it after TDR low-mass SUSY analysis cuts in inclusive jets+MET — lots to see after 1fb⁻¹)

The Michigan Black Box

Process/Kinematic Characterization

Parameterizing Rates in MARMOSET

Process	fit rate	Actual rate $(1fb^{-1})$
$N(gg \to AdjAdj)$	30600 ± 1300	27950
$Br(Adj \rightarrow t\bar{b}Ch^{-} \text{ or } c.c.)$	0.77 ± 0.01	0.77
$Br(Adj \rightarrow b\bar{b}Ne)$	0.21 ± 0.01	0.22
$Br(Adj \rightarrow q\bar{q}Ne)$	0.02 ± 0.01	0.01
$Br(Ch \to q\bar{q}'Ne)$	0.44 ± 0.11	0.6
$Br(Ch \rightarrow e/\mu \bar{\nu} Ne)$	0.55 ± 0.11	0.4

Example Distributions (1 fb^{-1})

jet multiplicity

b-tag multiplicity

Jet multiplicity in all events passing cuts

B multiplicity in all events passing cuts

Example Distributions (1 fb^{-1})

 $m_{\rm eff} = \sum p_T^i$

sum p₁ in all events passing cuts (GeV)

 $p_{\tau}(1)$ in all events passing cuts (GeV)

 $p_T(j_1)$

The Michigan Black Box Striking features lead to model predictions Adj

or

2j channel suppressed by small couplings to Higgsino 2j channel suppressed by high squark mass

The Michigan Black Box

Michigan Box (MSSM)

DBox

Nima & Natalia vs. Jesse & Philip (Marmoset Smackdown)

- SUSY with very heavy gauginos (> 5 TeV)
- Light scalars
- also light colored adjoint Φ decaying through $W\supset \frac{\Phi}{M}Q_3H_uU_3^c$
- looks like gluino with wrong decay modes!

rate consistent with QCD production through fermion only...

...and no associated production with squark. It's not a gluino!

DBox

ABox (RPV SUSY) Variant of Rutger's Blackbox (3rd LHC Olympics)

Simple observables and correlations between them constrain OSET

OSET constrains and motivates new physics Lagrangian

A successful Lagrangian characterization may be derived from the top down or from the bottom up, and will be most convincing when understood in both ways.