The Three Site Model collider phenomenology

Alexander Belyaev

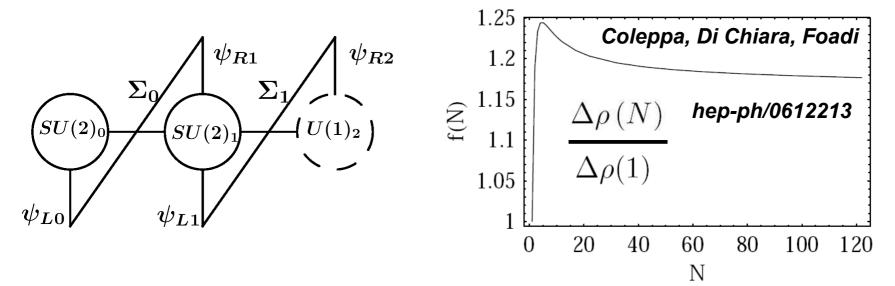
Michigan State University

In collaboration with

S. Chivukula, N. Christensen, E. Simmons (MSU) H.-J. He, Y.-P. Kuang and B. Zhang (Tsinghua University)

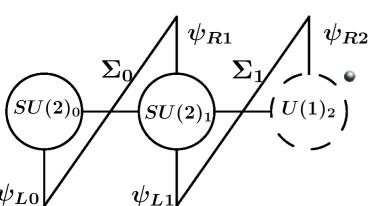
TSM: Representative of a Higgsless Extra Dimension

 Low energy phenomenology of a Higgsless ED is dominated by the 1st KK mode.



 The Three Site Model consistently implements the 1st KK mode in a gauge invariant way.

TSM: Representative of Dynamical EWSB

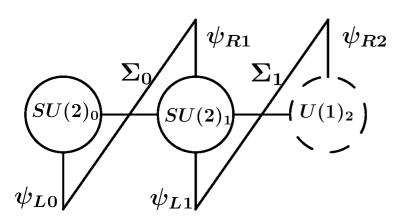


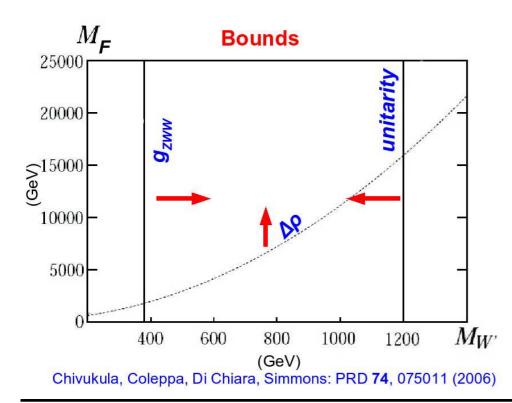
 Warped Higgsless ED is conjectured to be dual to a walking technicolor theory.

The Three Site Model consistently implements the vector resonances (TC) in a gauge invariant way.

 Satisfies precision electroweak measurements (S=0).

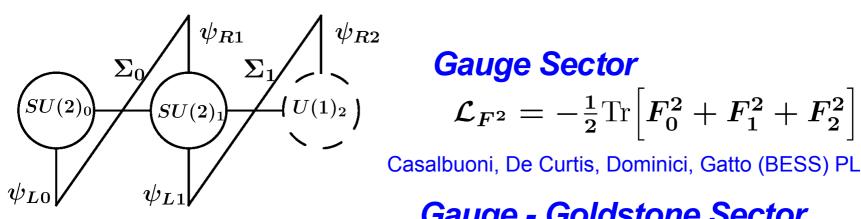
The Three Site Model is testable





The parameter space is:

- Simple
- Bounded
 - from below by experiment
 - from above by unitarity
- Can be tested at the LHC
 - this talk, work in progress



$$\mathcal{L}_{F^2} = -rac{1}{2} ext{Tr} \Big[F_0^2 + F_1^2 + F_2^2 \Big]$$

Casalbuoni, De Curtis, Dominici, Gatto (BESS) PLB 155 (1985) 95

Gauge - Goldstone Sector

$$\mathcal{L}_{D\Sigma} = rac{f^2}{2} ext{Tr} \Big[\left(D_{\mu} \Sigma_0
ight)^{\dagger} D^{\mu} \Sigma_0 + \left(D_{\mu} \Sigma_1
ight)^{\dagger} D^{\mu} \Sigma_1 \Big]
onumber \ oldsymbol{x} = rac{2 M_W}{M_{W'}} \qquad M_W = g_1 f rac{\sqrt{2 + x^2 - \sqrt{4 + x^4}}}{2 \sqrt{2}}$$

Fermion - Goldstone Sector

$$\mathcal{L}_{\Sigma\psi} = -M_F \Big(\epsilon_L \bar{\psi}_{L0} \Sigma_0 \psi_{R1} + \bar{\psi}_{L1} \psi_{R1} + \bar{\psi}_{L1} \Sigma_1 \epsilon_R \psi_{R2} \Big)$$

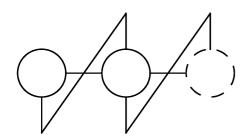
ideal delocalization (IDEL)

$$egin{aligned} rac{g_0}{g_1} &= x \ll 1 \ rac{g_2}{g_0} &= s/c = t \ rac{1}{e^2} &= rac{1}{g_0^2} + rac{1}{g_1^2} + rac{1}{g_2^2} \ \Sigma_j &= e^{irac{2\pi_j}{f}} \end{aligned}$$

$$\frac{g_0(\psi_{L0}^f)^2}{g_1(\psi_{L1}^f)^2} = \frac{v_W^0}{v_W^1} - \epsilon_L^2 = \frac{2x^2}{2 - x^2 + \sqrt{4 + x^4}}$$

$g_W^{TSM} = g_W^{SM} + O(x^4)$

Independent parameters: M_{W} , s_{W} , M_{W} , M_{E}



Allowed deviation from IDEL

$$-0.33 < S < 0.07$$
 at 95%C.L. $M_H^{ref} = 117 \text{GeV}$

$$g_{We\nu} = \frac{e}{s_M} \left(1 + \frac{\alpha_{em}}{4s_M^2} S^0 \right) \stackrel{\circ}{\underset{\omega}{\otimes}} 0.25$$

$$g_{We\nu} = \frac{e}{s_M} \left(1 + \frac{x^2}{4} - \frac{\epsilon_L^2}{2} \right) \stackrel{\circ}{\underset{\omega}{\otimes}} 0.15$$

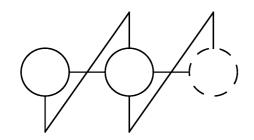
$$s=-0.33$$

$$0.1$$

$$S=0.07$$

(see E.Simmons and C.Jackson talks)

 $M_{M'}$



Particle Content

$$\gamma, G$$

$$Z,W^{\pm}$$

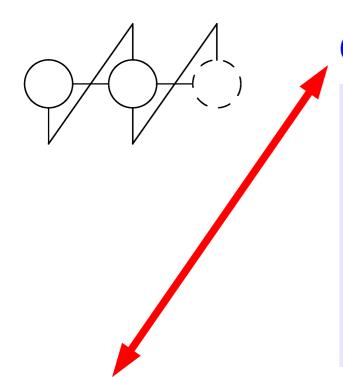
$$Z',W'^{\pm}$$

$$\left(egin{array}{c} u \ d \end{array}
ight) \left(egin{array}{c} c \ s \end{array}
ight) \left(egin{array}{c} t \ b \end{array}
ight)$$

$$\left(egin{array}{c} u \ d \end{array}
ight) \left(egin{array}{c} c \ s \end{array}
ight) \left(egin{array}{c} t \ d \end{array}
ight) \left(egin{array}{c} a' \ d' \end{array}
ight) \left(egin{array}{c} c' \ s' \end{array}
ight) \left(egin{array}{c} t' \ b' \end{array}
ight)$$

$$\left(egin{array}{c}
u_e \ e \end{array}
ight) \left(egin{array}{c}
u_\mu \ \mu \end{array}
ight) \left(egin{array}{c}
u_ au \ au \end{array}
ight)$$

$$\left(egin{array}{c}
u_e \\ e \end{array}
ight) \left(egin{array}{c}
u_\mu \\ \mu \end{array}
ight) \left(egin{array}{c}
u_ au \\ au \end{array}
ight) \left(egin{array}{c}
u'_e \\ e' \end{array}
ight) \left(egin{array}{c}
u'_\mu \\ \mu' \end{array}
ight) \left(egin{array}{c}
u'_ au \\ au' \end{array}
ight)$$



CalcHEP (by Alexander Pukhov)

- User friendly graphical interface.
 - Batch mode also available.
- Easy implementation of new models.
 - **▶** Especially using LanHEP (by Andrei Semenov).
- Feynman gauge and unitary gauge.
 - **▶** Important cross check.
- Interface with Pythia
- Many other new features

LanHEP (by Andrei Semenov)

- Automatic Feynman rules from Lagrangian
- Has checks for
 - Hermiticity
 - **▶** BRST invariance
 - EM charge conservation
 - Particle mixings, mass terms, and mass matrices

Example of model Implementation using LanHEP

LanHEP

$$\mathcal{L}_{F^2} = -rac{1}{2} ext{Tr} \Big(F_0^2 + F_1^2 + F_2^2 \Big) \; ext{ where } F_j^{\mu
u} = \partial^\mu W_j^\mu - \partial^
u W_j^\mu + i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^{\mu
u} = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^\mu, W_j^
u
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^\mu, W_j^\mu, W_j^\mu
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^\mu, W_j^\mu, W_j^\mu, W_j^\mu, W_j^\mu, W_j^\mu
ight] \Big] \; ext{where } F_j^\mu = i g_j \left[W_j^\mu, W_j^\mu,$$

```
%%%%%%%%% Kinetic and self interaction Lagrangian terms. lterm -F^**2/4 where F=deriv^mu^*W23^nu-deriv^nu^*W23^mu. lterm -F^**2/4 where F=deriv^mu^*W0^nu^a-deriv^nu^*W0^mu^a-g^*eps^a^b^c^*W0^mu^b^W0^nu^c. lterm -F^**2/4 where F=deriv^mu^*W1^nu^a-deriv^nu^*W1^mu^a-g/x^eps^a^b^c^*W1^mu^b^W1^nu^c.
```

(gauge kinetic term as an example)

Ihep 3-site.mdl

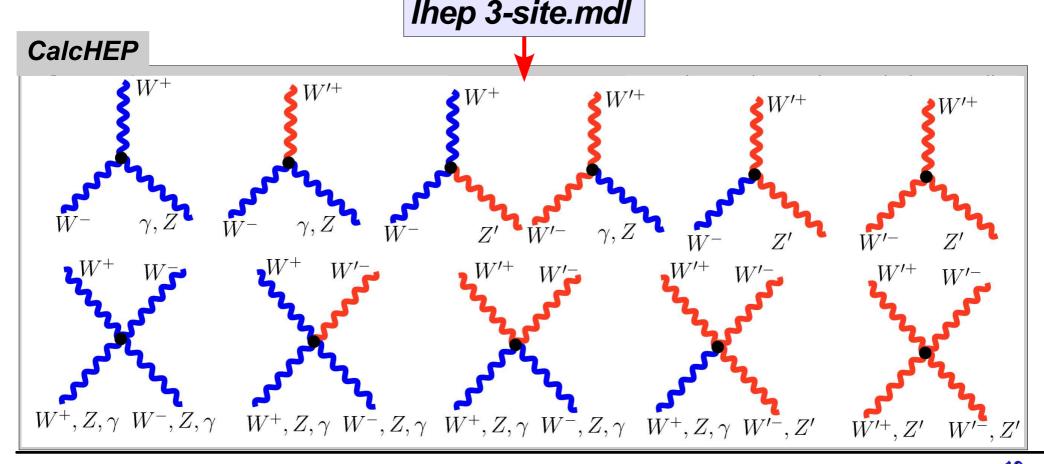
CalcHEP

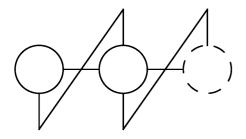
Lagrangian							
P1 -	PŽ	P3	P4	> Factor			
A	W+	W-		j-g*v0g			
A	~₩+	~W−	ĺ	j−g*v0g			
₩+	W-	Ż	j	j-g∕x			
₩+	W-	[~Z	j	j-g/x			
₩+	İΖ	~W−	j	j-g/x			
₩+	~W-	ĺ∼Z	j	j-g/x			
W-	İΖ	~W+	İ	[-g/x			
W-	~W+	[~Z	j	[-g/x			
Z	~W+	~W-	j	j-g∕x			
~W+	~W-	[~Z	j	Í-q∕x			
A	ĺΑ	W+	W-	j-a**2*v0a**2			
A	İΑ	~W+	~W-	j-g**2*v0g**2			
A	W+	W-	Ż	j-q**2*v0q/x			
A	W+	W-	[~Z	j-g**2*v0g/x			
A	₩+	Z	~W-	[-g**2*v0g/x			
A	W+	~W-	~Z	j-g**2*v0g/x			
A	W-	Z	~W+	[-q**2*v0q/x			
A	W-	~W+	~Z	j-g**2*v0g/x			
A	Z	~W+	~W-	j-g**2*v0g/x			
A	~₩+	~W-	ĺ∼Z	Í-á**2*v0á/x			

₩+	₩+	W-	W-	g**2/x**2′
₩+	₩+	W-	~W-	g**2/x**2
₩+	₩+	\sim W $-$	~W-	g**2/x**2
W+	W-	W-	~W+	[q**2/x**2
W+	W-	Z	Z	-g**2/x**2
W+	W-	Z	~Z	-g**2/x**2
₩+	W-	~W+	~W-	g**2/x**2
₩+	W-	~Z	~Z	-g**2/x**2
₩+	Z	Z	~₩-	-g**2/x**2
₩+	Z	\sim W $-$	~Z	j-g**2/x**2
₩+	~₩+	\sim W $-$	~₩−	g**2/x**2
₩+	~₩−	~Z	~Z	-g**2/x**2
W-	W-	~W+	~W+	g**2/x**2
W-	Z	Z	~W+	[-g**2/x**2
W-	Z	\sim W+	~Z	-g**2/x**2
W-	~₩+	\sim W+	~₩−	g**2/x**2
W-	~₩+	~Z	~Z	-g**2/x**2
Z	Z	\sim W+	~₩-	-g**2/x**2
Z	~₩+	\sim W $-$	~Z	-g**2/x**2
~W+	~₩+	\sim W $-$	$\sim W-$	g**2/x**2
~W+	~₩−	~2	~Z	-g**2/x**2

Example of model Implementation using LanHEP

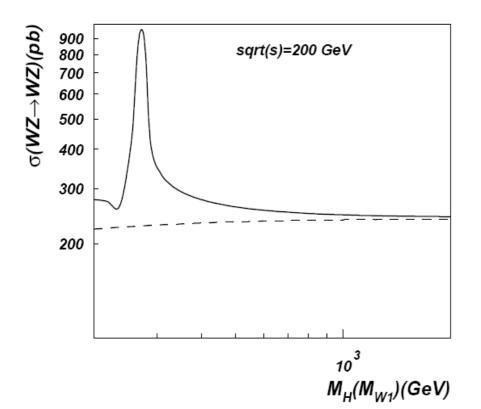
LanHEP $\mathcal{L}_{F^2} = -\frac{1}{2} \mathrm{Tr} \Big(F_0^2 + F_1^2 + F_2^2 \Big) \text{ where } F_j^{\mu\nu} = \partial^\mu W_j^\mu - \partial^\nu W_j^\mu + i g_j \left[W_j^\mu, W_j^\nu \right]$





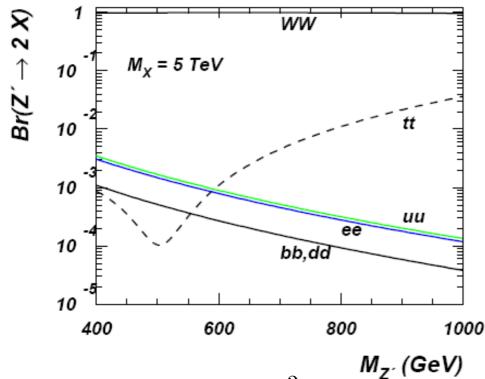
Checks:

- Feynman vs. Unitary gauge.
- Decoupling of heavy fields.
- Masses and mixings (LanHEP).
- Hermiticity (LanHEP).



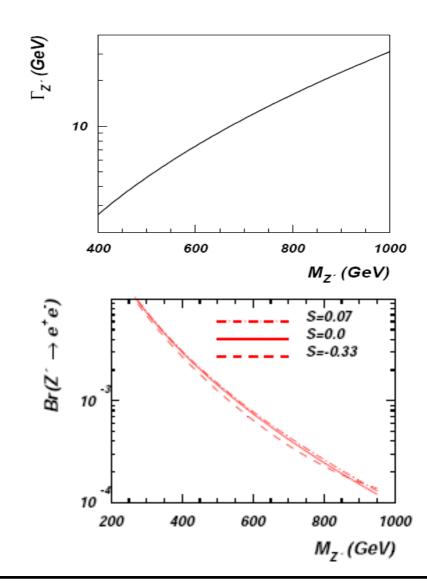
Gauge boson widths and branchings

- Fermiophobic nature of the gauge bosons
- Dominant decay into WW and WZ pairs
- Z' Br does not depend much on deviation from ideal delocalization



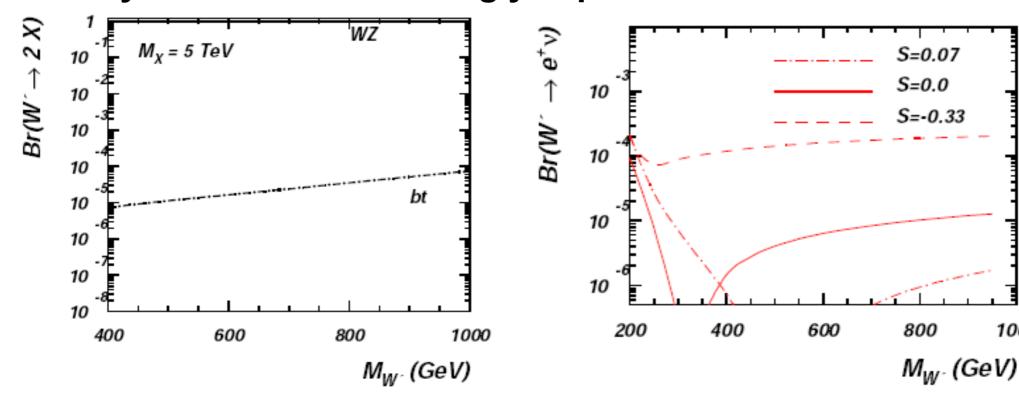
$$\Gamma(Z' \to W^+W^-) = \frac{e^2 M_{W'}}{192\pi x^2 s_w^2}$$

$$\Gamma(Z' \to e^+ e^-) = \frac{5e^2 M_W x^2 s_w^2}{384\pi c_w^4}$$



W' decays

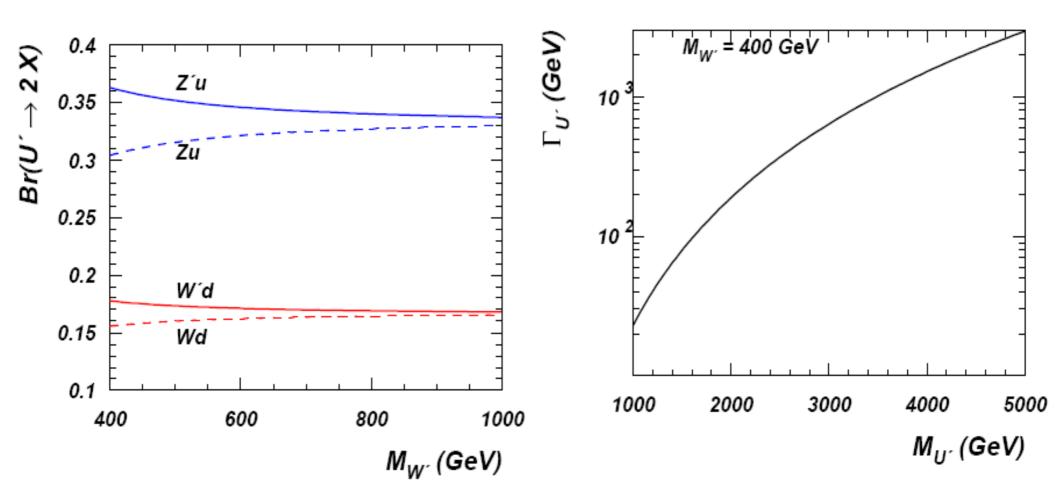
decays into fermions strongly depend on delocalization



$$\Gamma(W' \to e^+ e^-) = \frac{e^2 M_{W'} x^2 \left(1 - \frac{2\epsilon_L^2}{x^2}\right)^2}{192\pi s_w^2}$$

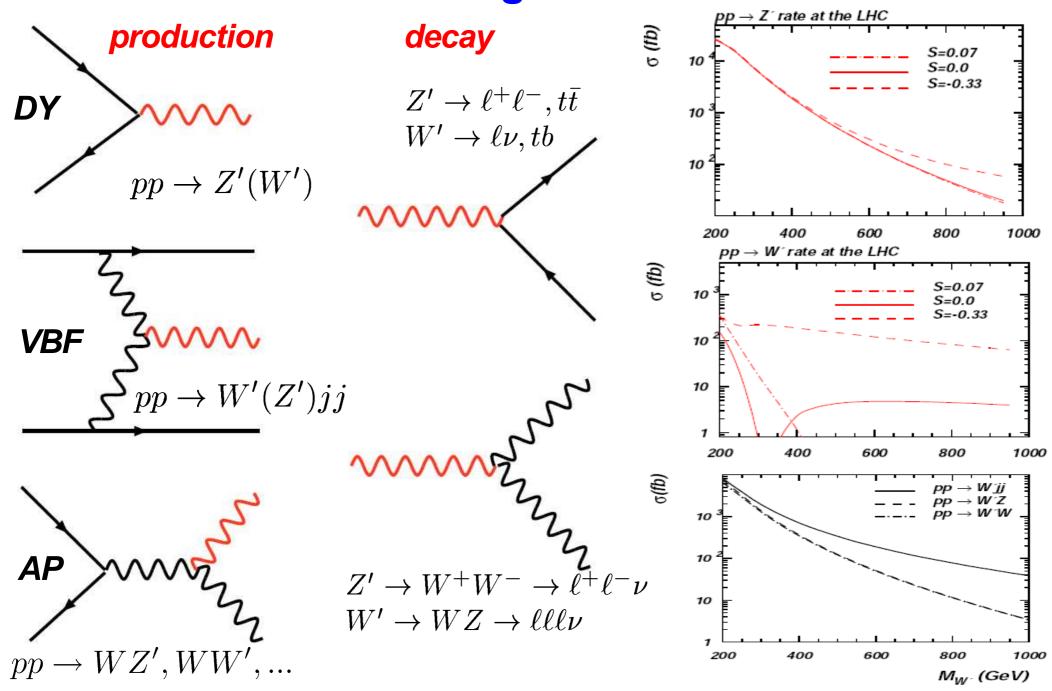
1000

Heavy fermions

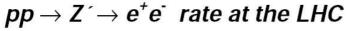


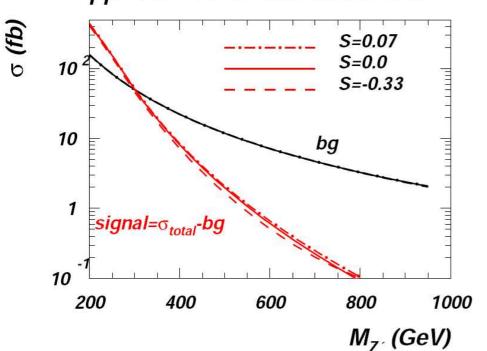
- •crucial ingredient of the model, in particular, provide unitarity (see Neil Christensen's talk)
- but are too heavy to be observed even in strong pair production processes

Three Site Model Signatures

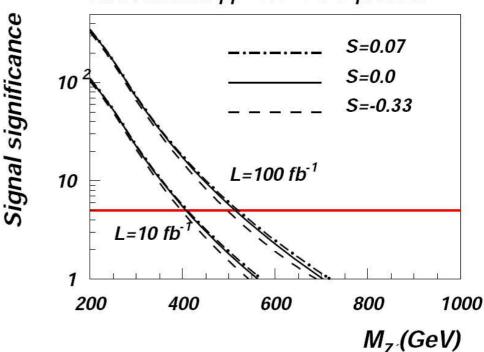


LHC reach for DY di-lepton signature

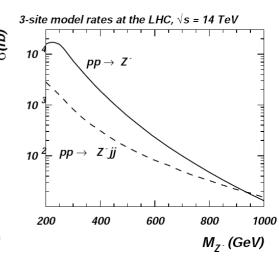




LHC reach for pp \rightarrow Z´ \rightarrow e⁺e⁻ process



- Decay and production are suppressed by x⁴ compared to 'toy' §
 PYTHIA Z' model
- The realistic (e.g. TSM) is very different from the toy one!
 - ◆ Discovery range drops from ~3-5 TeV down to ~0.5 TeV
 - fermiophobic Z' required by EW data
 - Z'WW coupling is non-vanishing to provide unitarity
- • $e^+e^- + \mu^+\mu^-$ + VBF will extend limit up to ~0.6 TeV (100 fb⁻¹)

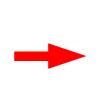


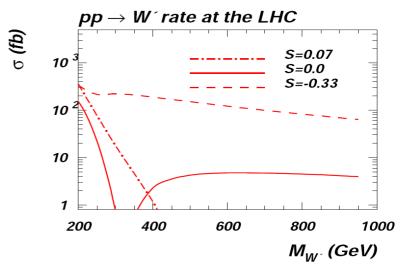
LHC reach for DY tri-lepton signature

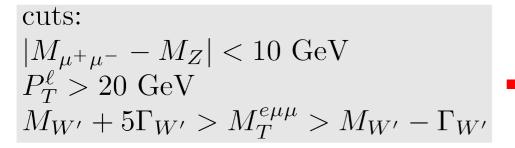
In case of maximal deviation from idea delocalization

$$pp \to W' \to WZ \to 3\ell + \nu$$

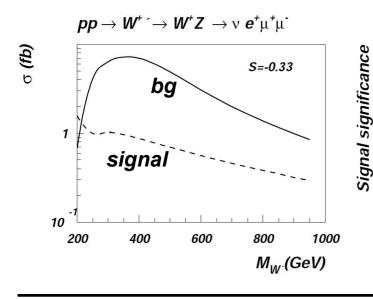
process can become important

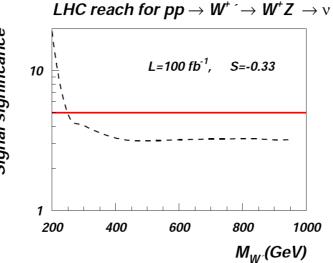


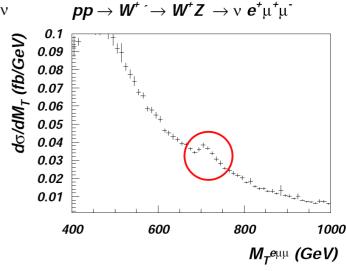




~ 1 fb for M_w=700 GeV but further BG reduction is necessary: work in progress



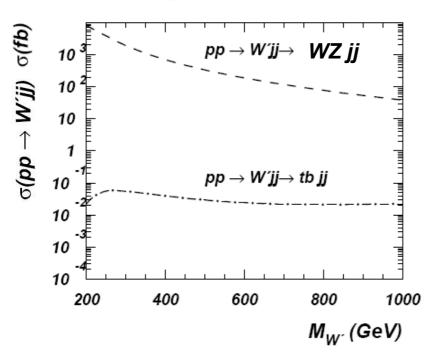


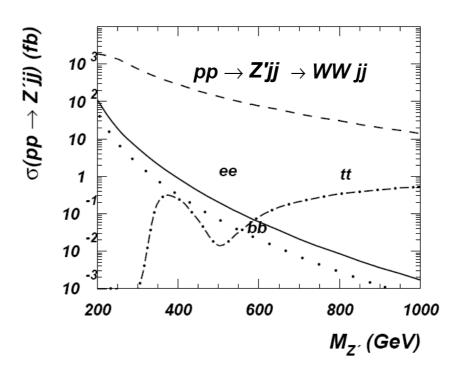


$WW \rightarrow Z'$ and $WZ \rightarrow W'$ Fusion

next promising step

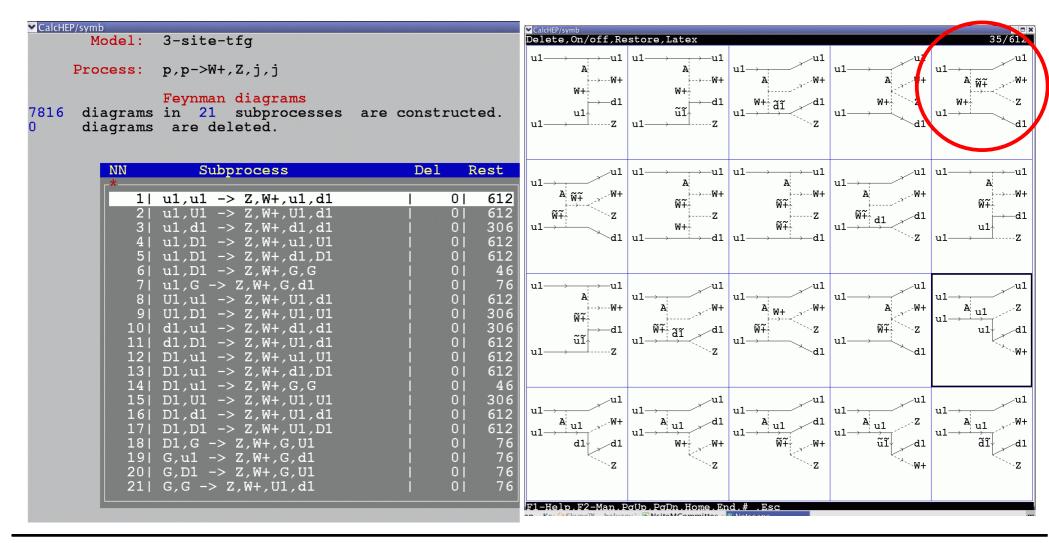
- → ~ 1fb for tri-lepton signature for M_{w'} ~ 1TeV
- lower/more reducible background as compared to DY bg
- manageable with CalcHEP!



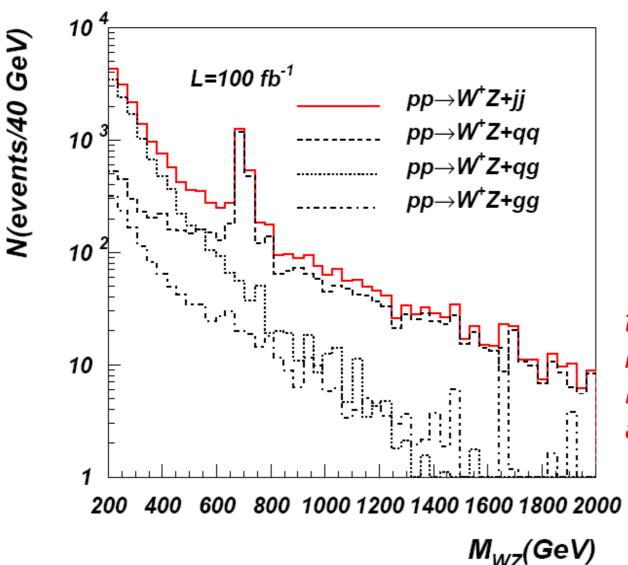


$pp o W^+ Z j j$

- No effective WZ approximation.
- Complete set of signal and background diagrams including interference.



Preliminary $pp o W^+ Z j j$



$$p_T^j > 30 \text{ GeV}$$

$$2 < |\eta^j| < 4.5$$

$$E^{j} > 300 \text{ GeV}$$

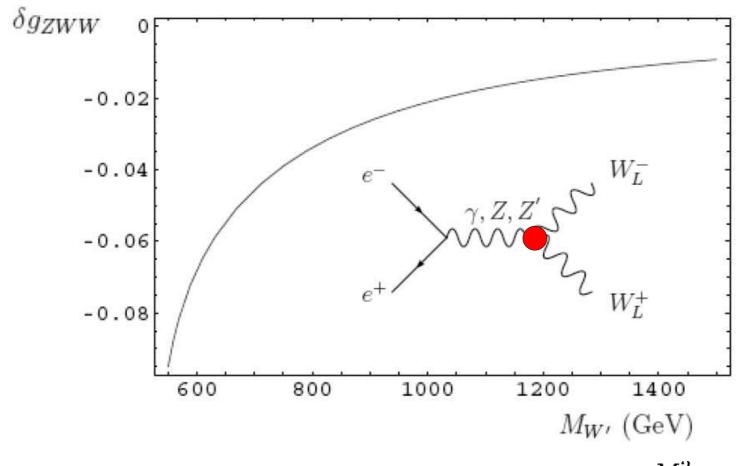
$$E^{W,Z} > 200 \text{ GeV}$$

$$\Delta Rjj > 0.5$$
.

the complete WZqq BG is factor 4 bigger then PYTHIA effective V-boson approximation!

To be compared with Birkedal, Matchev, Perelstein: PRL 94, 191803 (2005).

Prospects for ILC@ 0.5 TeV: g_{wwz}



$$\delta g_{ZWW} = \frac{g_{\chi Zee}g_{ZWW}}{g_{\chi Zee_{SM}}g_{ZWW_{SM}}} + \frac{g_{\chi Z'ee}g_{Z'WW}}{g_{\chi Zee_{SM}}g_{ZWW_{SM}}} \frac{s - M_Z^2}{s - M_{Z'}^2} - 1$$

ILC sensitivity is ~ 4 x 10⁻⁴ with 500 fb⁻¹

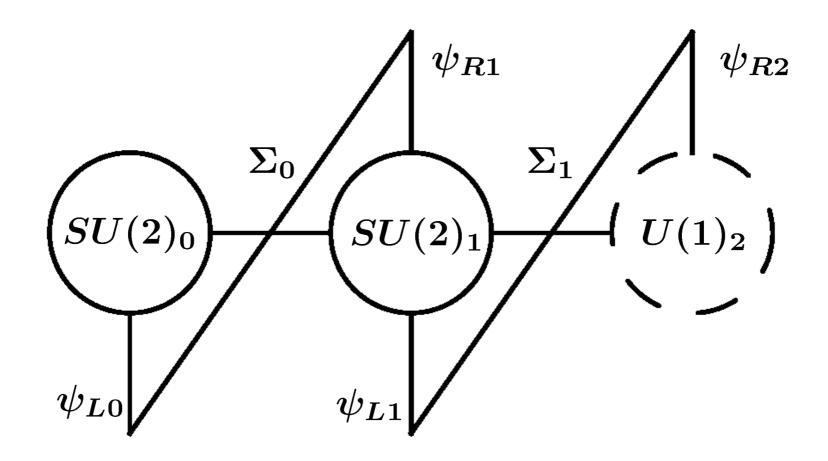
hep-ex/0106057 American LC Working Group

Conclusions and outlook

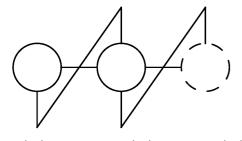
- Three site model is compelling
 - ▶ Is simple, yet consistently implements the 1st KK mode of a Higgsless ED
 - Is representative of Higgsless models and their duals dynamical symmetry breaking models
 - Is consistent with precision electroweak observables (IDEL)
 - → Has a simple parameter space (M_F , M_W)
- Implemented into ClacHEP powerful tool for pheno studies
 - model is complete and tested in both gauges
 - public: hep.pa.msu.edu/people/belyaev/public/3-site/
- Offers distinctive exiting phenomenology
 - → fermiophobic Z',W': di-lepton DY discovery range is up to M_{w'} ~0.6 TeV
 - very different from 'toy' models
 - resonances in WZ scattering
 - ▶ WZ tri-lepton signatures
 - DY: W' production in case of large deviation from IDEL
 - VBF: could test M_{w'} ~ 1TeV: work in progress!
 - ◆ 0.5 TeV ILC can test M_w beyond 1 TeV with g_{wwz} coupling measurement

Appendix

The Three Site Model



Chivukula, Coleppa, Di Chiara, Simmons PRD **74**, 075011 (2006)



$$SU(2)_0 \times SU(2)_1 \times U(1)_2$$

$$W_j = \left(egin{array}{cc} rac{1}{2}W_j^0 & rac{1}{\sqrt{2}}W_j^+ \ rac{1}{\sqrt{2}}W_j^- & -rac{1}{2}W_j^0 \end{array}
ight)$$

where j=0,1

$$W_2 = \left(egin{array}{cc} rac{1}{2}W_2^0 & 0 \ 0 & -rac{1}{2}W_2^0 \end{array}
ight)$$

Gauge Sector

$$g_0 = g, \quad g_1 = \tilde{g}, \quad g_2 = g'$$

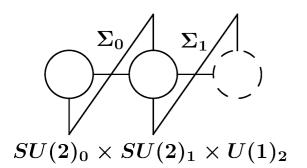
 $\tilde{g} \gg g, g'$
 $\Rightarrow g/\tilde{g} = x \ll 1, g'/g = s/c = t$
 $\frac{1}{e^2} = \frac{1}{g^2} + \frac{1}{\tilde{g}^2} + \frac{1}{g'^2}$

$$\mathcal{L}_{F^2} = -\frac{1}{2} \text{Tr} \Big[F_0^2 + F_1^2 + F_2^2 \Big]$$

where

$$F_{j}^{\mu
u}=\partial^{\mu}W_{j}^{\mu}-\partial^{
u}W_{j}^{\mu}+ig_{j}\left[W_{j}^{\mu},W_{j}^{
u}
ight]$$

Casalbuoni, De Curtis, Dominici, Gatto (BESS) Phys. Lett. B155 (1985) 95



$$\Sigma_j = e^{irac{2\pi_j}{f}}$$

$$\pi_j = \left(egin{array}{ccc} rac{1}{2}\pi_j^0 & rac{1}{\sqrt{2}}\pi_j^+ \ rac{1}{\sqrt{2}}\pi_j^- & -rac{1}{2}\pi_j^0 \end{array}
ight)$$

Gauge - Goldstone Sector

$$\mathcal{L}_{D\Sigma} = rac{f^2}{2} ext{Tr} \Big[\left(D_{\mu} \Sigma_0
ight)^{\dagger} D^{\mu} \Sigma_0 + \left(D_{\mu} \Sigma_1
ight)^{\dagger} D^{\mu} \Sigma_1 \Big]$$

where

$$D_{\mu}\Sigma_{j}=\partial_{\mu}\Sigma_{j}+ig_{j}W_{j}\Sigma_{j}-ig_{j+1}\Sigma_{j}W_{j+1}$$

This gives the gauge boson mass matrices:

$$M_{\pm}^2 = rac{f^2}{4} \left(egin{array}{cc} g_0^2 & -g_0g_1 \ -g_0g_1 & 2g_1^2 \end{array}
ight)$$

$$M_N^2 = rac{f^2}{4} \left(egin{array}{ccc} g_0^2 & -g_0g_1 & 0 \ -g_0g_1 & 2g_1^2 & -g_1g_2 \ 0 & -g_1g_2 & g_2^2 \end{array}
ight)$$

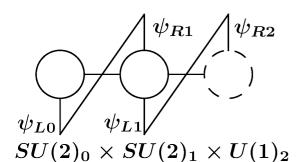
$$\Sigma_0$$
 Σ_1 Σ_1 Σ_1 Σ_1 Σ_1 Σ_2 Σ_1 Σ_2 Σ_1 Σ_2 Σ_3 Σ_4 ## Independent parameters: M_W , M_Z , e, M_W . Dependent parameters: g_0 , g_1 , g_2 , f

$$x = rac{g_0}{g_1}$$
 $t = rac{g_2}{g_0}$ $rac{1}{e^2} = rac{1}{g_0^2} + rac{1}{g_1^2} + rac{1}{g_2^2}$

$$rac{M_W^2}{M_{W'}^2} = rac{2 + x^2 - \sqrt{4 + x^4}}{2 + x^2 + \sqrt{4 + x^4}}$$

$$rac{M_W^2}{M_Z^2} = rac{2 + x^2 - \sqrt{4 + x^4}}{2 + x^2(1 + t^2) - \sqrt{4 + x^4(1 - t^2)^2}}$$

$$M_W=g_1frac{\sqrt{2+x^2-\sqrt{4+x^4}}}{2\sqrt{2}}$$



Fermion - Gauge Sector

$$\mathcal{L}_{D\psi} = \bar{\psi}_{L0} \not\!\!\!D \; \psi_{L0} + \bar{\psi}_1 \not\!\!\!D \; \psi_1 + \bar{\psi}_{R2} \not\!\!\!D \; \psi_{R2}$$

$$Y_{0,1Q} = 1/6$$
 $Y_{0,1L} = -1/2$

where

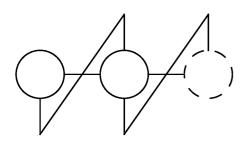
$$Y_{2u}=2/3$$

$$D_{\mu}\psi_{j}=\partial_{\mu}\psi_{j}+ig_{j}W_{j}\psi_{j}+ig_{2}Y_{jf}W_{2}\psi_{j}$$

$$Y_{2d} = -1/3$$
 $Y_{2e} = -1$

for
$$j=1,2$$
 and

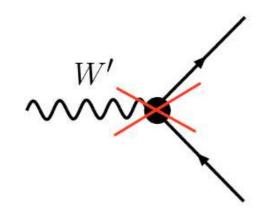
$$D_{\mu}\psi_2 = \partial_{\mu}\psi_2 + ig_2Y_{2f}W_2\psi_2$$



Ideal Delocalization (IDEL)

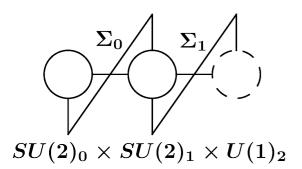
$$g_i v_{Le}^i v_{L\nu}^i = [g_{W_{SM}} + O(x^4)] v_w^i$$

$$egin{array}{lll} g_{W_{TSM}} &=& g_0 v_{Le}^0 v_{L
u}^0 v_W^0 + g_1 v_{Le}^1 v_{L
u}^1 v_W^1 \ &=& \left[g_{W_{SM}} + O(x^4)
ight] \left(v_W^0 v_W^0 + v_W^1 v_W^1
ight) \ &=& g_{W_{SM}} + O(x^4) \end{array}$$



$$egin{array}{lll} g_{W_{TSM}'} &=& g_0 v_{Le}^0 v_{L\nu}^0 v_{W'}^0 + g_1 v_{Le}^1 v_{L\nu}^1 v_{W'}^1 \ &=& g_{W_{SM}} \left(v_W^0 v_{W'}^0 + v_W^1 v_{W'}^1
ight) \ &=& 0 \end{array}$$

Chivukula, Simmons, He, Kurachi, Tanabashi: PRD 72, 015008 (2005) Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini, : PRD 53, 5201 (1996)



Gauge Fixing Sector

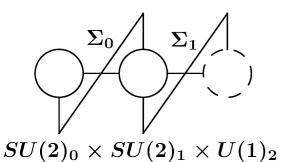
$$\mathcal{L}_{GF} = - ext{Tr} \Big[G_0^2 + G_1^2 + G_2^2 \Big]$$
 where

$$G_0 = \partial \cdot W_0 - rac{1}{2} g_0 f(\pi_0)$$

$$G_1 = \partial \cdot W_1 - rac{1}{2}g_1 f(\pi_1 - \pi_0)$$

$$G_2 = \partial \cdot W_2 - rac{1}{2}g_2 f(- \pi_1^{ns})$$

$$\pi_1^{ns}=\left(egin{array}{cc} rac{1}{2}\pi_j^0 & 0 \ 0 & -rac{1}{2}\pi_j^0 \end{array}
ight)$$



Ghost Sector

$$\mathcal{L}_{ar{c}c} = -\mathrm{Tr}\Big[ar{c}_0\delta_{_{BRST}}G_0 + ar{c}_1\delta_{_{BRST}}G_1 + ar{c}_2\delta_{_{BRST}}G_2\Big]$$

where

$$\delta_{_{BRST}}W_{\mu j}=-\Big(\partial_{\mu}c_{j}+ig_{j}\left[
ight.W_{\mu j}\;,\;c_{j}\;
ight]\Big)$$

$$egin{aligned} \delta_{_{BRST}}\pi_j &= rac{1}{2}f(g_jc_j-g_{j+1}c_{j+1}) + rac{i}{2}\left[\;g_jc_j+g_{j+1}c_{j+1}\;,\;\pi_j\;
ight] \ &-rac{1}{6f}\left[\;\pi_j\;,\;\left[\;\pi_j\;,\;g_jc_j-g_{j+1}c_{j+1}\;
ight]\;
ight] + \cdots \end{aligned}$$

