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Abstract

We present here the first search for Standard Model VH — VWW — lviviv
production, where V is the W and Z weak vector bosons, using 4.8 fb~! of integrated
luminosity. This analysis adds to the existing CDF HWW group’s dilepton analysis
two new regions characterized by a tri-lepton signature, which are chosen to isolate
the WH — WWW and ZH — ZWW associated production signals in the three-
lepton bin. As such, we define two new regions denoted trilepton-NoZPeak (for
the W H-centered analysis) and trilepton-InZPeak (for the ZH-centered analysis)
with which we expect to contribute an additional ~ 5.8% acceptance to the current
H — WW dilepton analysis. The trilepton-InZPeak region is defined by events
having at least one lepton pairing (among three possible pairings) with opposite-
sign, same flavor, and a dilepton invariant mass within [91.0,101.0] GeV-a 10 GeV
window around the Z-boson mass. The trilepton-NoZPeak region is then defined
by those trilepton events which do not match the InZPeak definition.

These two new regions are poised to make a substantial contribution to the
H — WW group result. The NoZPeak analysis expected limits reach 9.2 times
the standard model limit; the trilepton-InZPeak analysis is set at 12.5 times the
expected standard model limit; and the combined trilepton analysis is set at 6.23
times the expected standard model limit. Finally, for the combined H — WW
analysis result, in the 165 GeV bin the limit drops from 1.282 to 1.12. As such, we
are poised to begin excluding the standard model Higgs boson at 95% confidence
level with CDF-only analyses in short order.
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The WH- WWW Trilepton Signal

Figure 1: W H associated production trilepton signal topology

1 Introduction

We present here the first iteration of a search for Standard Model VH — VWW — lviviv
production, where V is the W and Z weak vector bosons, using 4.8 fb~! of integrated lumi-
nosity. This note focuses on two channels chosen specifically to isolate the WH — WWW
and ZH — ZWW associated production processes because of their unique characteristics.
Consider the three leptons as ordered by their transverse momentum pr (or transverse
energy Er for electrons) such that the highest pr lepton is the 15 and the lowest pr lepton
is the 3", First, we filter trilepton events into an InZPeak category if any of the three
possible dilepton pairings (that is, pairing the 1 lepton with the 2" lepton; the 15 lepton
with the 3'¢ lepton; or the 2°¢ lepton with the 3™ lepton) has an invariant mass value
that falls within a 10 GeV window of the Z boson mass at 91 GeV and also have opposite
signs and same flavor. This InZPeak analysis focuses on the ZH signal process. The rest
of the trileptons events—those that do not have any of the three dilepton invariant mass
values near the Z boson mass—are directed toward the NoZPeak analysis, which focuses
on the W H signal process. These regions are new to the H — WW analysis group.

Additionally, the NoZPeak region has a missing energy cut of K, > 20 GeV. This cut
drastically reduces the Zv background contribution and also provides a NoZPeak control
region in 10.0GeV < H, < 20.0. Because the WH — WWW — lviviv event topology
has three W — [v decays, the missing energy is relatively large and a negligible amount
of signal is lost from moving the H; cut up to 20.0 GeV from 10.0 GeV.

The InZPeak region has somewhat larger backgrounds than the NoZPeak region and
is topologically similar to the most signficant background, W 2. However, for a ZH —
ZWW event to produce a three-lepton signature we either have one of the W-leptons
decaying hadronically or-less frequently-we have a ZH — ZWW — [lll physics event
that loses one of it’s leptons to an area of the detector that is incapable of reconstructing
a track (detector holes or too far forward in pseudorapidity) but is still recorded by the
calorimeter system. Therefore, ZH trilepton events inherently have a higher number of
jets than the backgrounds and very little signal in the NJet= 0 bin. This characteristic
of the ZH trilepton signal allows us to create a control region for the InZPeak analysis
in the NJet= 0 bin with very little signal loss.

The three lepton + K signature with an unspecified number of jet is a relatively
complex event topology that introduces a correspondingly large number of variables that
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describe the event. This is a fortuitous circumstance as it allows the formulation of many
complex variables that powerfully discriminate the signals from backgrounds in both of
these new NoZPeak and InZPeak trilepton regions. Together, they represent a strong
addition to the search for the standard model Higgs boson.



2 Motivation for Trileptons

The productions cross sections for W H and ZH may be small relative to the gluon fusion
cross section of the current H — WW analysis, but until now the trilepton signature has
been completely unexplored, the uniqueness of the trilepton signature keeps background
low, and every little bit counts as we push toward the standard model limit.

Leptons decaying from a WW-boson are physically detectable from an experimental
point of view if the W decays to an electron, a muon, or a tau provided that the tau goes
on to decay to an electron or muon. Given a generic W-boson, the probability of getting
a lepton via any of these decays is : 3

P(W — 1) = P(W — €) + P(W — ) + P(W — 1) [P(r — €) + P(r — p)]
= (0.2528

The relevant cross sections are (from tables 2, 3, and see *)
® 041 = 0.4607 pb
e own = 0.0510 pb
e oz = 0.0331 pb

The dominant mode for the current H — WW group analysis is gluon fusion in the
two-lepton bin, which has an expected yield of:

Ogeri - BR(H — WW) - P(W — 1)* = 0.02653pb

By comparision, the expected yield for W H associated production in the three-lepton
bin is:

own - BR(H — WW) - P(W — [)? = 7.425 x 10~ *pb

or 2.8% the yield of the current analysis.

Z H associated production may have a smaller cross section than W H, but given one
such event there is a higher probability of producing three leptons. In this case, the Z
decays to two leptons so we need only one of the two Higgs-W-bosons to decay leptonically

3Basic decay values are from PDG Particle Physics Booklet (July 2006), Institute of Physics
4CDF Note 9863



mode | Period Stntuple o x B (pb) | K-factor® | Filter Eff
WZ 0-23 we0s6d, weOscd,weOshd | 3.46x0.101 1.0 0.754
weOsld,weOsod,weOsbf

weOshf

VA 0-23 we0s7d,weOsdd,weOsid 1.511 1.0 0.233
weOsmd, weOspd,weOscf

weOsif
tt 0-11 te0s2z 7.9x0.1027 1.0 1.0
Zy

@ If cross section is NLO, then K-factor is one.
b Gen5 tarball for period 0.

¢ my > 20.

d my > 10.

€10 <my < 20.

Table 1: Monte Carlo samples used in this analysis

and there are two ways for this to happen:

PW —1,W — 1) = P(W — 1)® = 0.06391

P(W — I,W — had.) = P(W — ) [1l — P(W — )] = 0.1889
P(W — had., W — 1) = P(W — ) [1 = P(W — )] = 0.1889
P(W — had.,WW — had.) = [1 — P(W — [)]> = 0.5583

® So the expected ZH yield is
oz - BR(H — WW)-P(Z —11)-2- P(W — I,WW — had.) = 7.425 x 10~*pb

or 3.0% of the current H — WW dilepton analysis. Thus, based on cross sections and
branching ratios alone we pursued this trilepton analysis expecting to contribute another
~ 5.8% to the current H — WW dilepton analysis.

Incidentally, one of the future improvements to this analysis is to accept 7 leptons
directly. Noting that the above prediction assumes that vector boson decays to 7’s result
in a detectable lepton only if that 7 decays to an electron or muon, if we repeat the
prediction assuming we accept hadronically decaying taus into the trilepton analysis,
then the 5.8% becomes 11.0%.

SObserve that 0.06391+0.1889-+0.1889+0.5583=1.0




Mg (GeV?) | Period Stntuple o (pb) | BR (H — WW) | Filter Efficiency
110 0-23 | fhgsda,fhgs6a | 0.2075 0.0441 0.6880
120 0-23 | fhgsdb,fhgs6b | 0.1529 0.1320 0.6978
130 0-23 | fthgsdc,thgsbe | 0.1141 0.2869 0.7032
140 0-23 | thgsdd,thgs6d | 0.0860 0.4833 0.7065
150 0-23 | thgsde,thgsbe | 0.0654 0.6817 0.7085
160 0-23 thgsdf thgs6f | 0.0510 0.9011 0.7108
170 0-23 | fhgsdg, fhgs6g | 0.0389 0.9653 0.7125
180 0-23 | fhgsah,fhgs6h | 0.0306 0.9345 0.7141
190 0-23 fhgsdi,thgs6i | 0.0243 0.7761 0.7151
200 0-23 | fhgsdj,hes6j | 0.0193 0.7347 0.7165
145 0-23 | thgsdo,thgs6o | 0.0749 0.5731 0.7075
155 0-23 | thgsdp,thgs6p | 0.0572 0.8007 0.7098
165 0-23 | fhgsdq,fhgs6q | 0.0441 0.9566 0.7114
175 0-23 | thgsdr,thgs6r | 0.0344 0.9505 0.7130

Table 2: Associated Higgs production with a W boson (from CDF Note 9863).

Mg (GeV?) | Period Stntuple o (pb) | BR (H — WW) | Filter Efficiency
110 0-23 | uhgs4a,uhgs6a | 0.1236 0.0441 0.6930
120 0-23 | uhgs4b,uhgs6b | 0.0927 0.1320 0.7031
130 0-23 | uhgsdc,uhgs6e | 0.0705 0.2869 0.7087
140 0-23 | uhgs4d,uhgs6d | 0.0542 0.4833 0.7122
150 0-23 | uhgsde,uhgs6e | 0.0421 0.6817 0.7151
160 0-23 uhgs4f uhgs6f | 0.0331 0.9011 0.7172
170 0-23 | uhgsdg,uhgs6g | 0.0261 0.9653 0.7184
180 0-23 | uhgs4h,uhgs6h | 0.0208 0.9345 0.7204
190 0-23 uhgs4i,uhgs6i | 0.0166 0.7761 0.7220
200 0-23 | uhgs4j,ubgs6j | 0.0135 0.7347 0.7239
145 0-23 | uhgs4o,uhgs6o | 0.0477 0.5731 0.7135
155 0-23 | uhgsdp,uhgs6p | 0.0373 0.8007 0.7155
165 0-23 | uhgsdq,uhgs6q | 0.0294 0.9566 0.7183
175 0-23 | uhgs4r,uhgs6r | 0.0233 0.9505 0.7196

Table 3: Associated Higgs production with a Z boson (from CDF Note 9863).




3 Event Summary and Signatures of the NoZPeak
and InZPeak Trilepton Regions

3.1 Trilepton Signal Regions Defined

The current H — WW group analysis is constrained only to the study of events with
exactly two leptons, which focuses primarily on the gluon fusion Higgs boson signal be-
cause of its large cross section relative to associated production. The trilepton analysis,
however, focuses virtually entirely on the two associated production channels because
there are three vector bosons that may all decay leptonically, whereas the gluon fusion
and vector boson fusion signals do not contribute a real third lepton. Monte Carlo sig-
nal simulation does indicate that gluon fusion and vector-boson fusion have negligible
contribution to the three-lepton bin. Thus, we are left with two signals to study: a
WH — WWW — lv,lv,lv signal and a ZH — ZWW — lv,lv,lv,jet signal. With
two signals we naturally define two new trilepton signal regions attempting to isolate
each, ameliorating the effort to discriminate each from background based on their unique
characteristics.

The Z-boson may decay to two detectable leptons, as opposed to the W-boson which
decays to a lepton and a neutrino that cannot be detected directly, so we begin by defining
the trilepton InZPeak region for the Z H signal. Each event in question has exactly three
leptons that may be combined into exactly three lepton pairs. If any of the three lepton-
pairs of an event have opposite sign, same flavor, and a dilepton invariant mass within
a 10.0 GeV window of the Z-boson mass at 91 GeV-that is, my; € [81.0,101.0] GeV—
then the event is directed towards the InZPeak analysis. All other trilepton events are
directed towards the NoZPeak analysis. Observe in table 4 that ~ 77% of the signal in the
NoZPeak region is W H, while ~ 96% of the signal in the InZPeak region is ZH. We will
see in section 4 how this division allows us to focus on the unique characteristic of each
signal for discrimination from the background in the NeuroBayes neural net treatment.

3.2 Backgrounds

Both regions of this trilepton analysis have five background categories considered: W Z,
77, Z~ (replacing Drell-Yan), Fakes (data-based WW and Z+jets), and ¢t. Each is
summarized in table 4 along with the predicted signal for a my = 160 GeV standard
model Higgs boson and the data.

3.2.1 Heavy Dibosons: WZ, ZZ

The W Z and Z Z diboson contributions provide three physical leptons, with W Z being the
dominant background in both trilepton signal regions. Both samples are Pythia-based,



Process

NoZPeak

InZPeak

WZ
Z7
Z

Fakes (WW, W+Jets, Z+Jets)

tt

5.9240.81
1.2840.1 7y
2.0440.36y
2.2840.68,y;
0.1440.024y

7.69%E 1050y
3.9620.544y
2.7340.49,ys;
6.5441.96,ys
0.02

W H160 Signal
Z H160 Signal

0.53%0. 1355
0.1640.04y5¢

0.02
0.5140.1245

Background Stack

11.741.32,5

20,942,644y

data(4.8 fb~1)

12

27

Table 4: Background and Signal Counts for the NoZPeak and InZPeak Trilepton Regions.

where the W is allowed to decay inclusively and the Z is forced to decay leptonically
(electron, muon, or tau pairs)®.

3.2.2 Zvy

The Z~ background in the trilepton analyses replaces the Drell Yan contribution of the
dilepton analyses and is created by the Bauer generator. We acquire a third lepton from
a Drell Yan process when either an initial or final state radiated photon undergoes a
conversion and showers in the calorimeter for the third lepton. As such, the Z+ is the
restriction of Drell Yan to those events which do radiate a photon for the purpose of
working with a larger statistical sample.

3.2.3 Fakes(WW, Z+4Jets)

In the dilepton analysis, the ”Fakes” category is measured from single high p; lepton data
(rather than MC) and assumed to have a W+jets event topology, where the one lepton is
from the W-boson. This data sample is then scaled down by the predicted rate of which
a jet will fake a second lepton in the detector.

Similarly, for the trilepton analyses we are interested in processes that produce two
physical lepton and contribute a third fake lepton from the jets. Two high pr lepton data
is dominated by WW and Z-+jets. First note that we do not consider simulated WV
background as the dilepton analyses do to avoid double counting the process. Second,
because the rate at which a jet is expected to fake a lepton is on the order of 1 — 5%,
the rate at which such an event is expected to fake two leptons is drastically lower:
0.01 — 0.25%. As such, we consider the contribution of WW+jets with one real lepton and
two faked lepton to be negligible for the trilepton analyses.

SCDF Note 9863
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3.24 tt

Though the contribution from ¢t is small, we do consider it in this analysis. This back-
ground falls into the three lepton bin by having two W boson decaying to physical leptons
and two b-jets that may occasionally fake a third lepton. The rate at which specifically a
b-jet—as opposed to light jets—fakes a lepton is not well studied, so we use a monte carlo
tt sample and look directly in the three lepton bin instead of applying a fake rate.

3.2.5 Correction to Simulation and Fake Rates

To properly weight events from simulation and scale data-based backgrounds, we follow
the same standard procedures that the rest of the H — WW group as described in CDF
Note 9863.

3.3 Signal Yields in the NoZPeak and InZPeak Regions

Although we have defined two signal trilepton signal regions to separately focus on the
WH and ZH associated production channels, both regions do contain both signal and
are summarized for all generated masses in table 5.

myg GeV NoZPeak InZPeak
WH | ZH | Total || WH | ZH | Total
110 0.05 | 0.02 | 0.07 || 0.002 | 0.06 | 0.06
120 0.15 | 0.05 | 0.20 || 0.004 | 0.15 | 0.15
130 0.28 | 0.09 | 0.37 || 0.008 | 0.29 | 0.30
140 0.40 | 0.12 | 0.52 0.01 | 0.41 | 0.42
145 0.44 | 0.14 | 0.58 0.02 | 0.45 | 0.47
150 047 | 0.14 | 0.61 0.02 | 0.48 | 0.50
155 0.50 | 0.16 | 0.66 0.02 [ 0.51 | 0.53
160 0.53 | 0.16 | 0.69 0.02 [ 0.51 | 0.53
165 0.50 | 0.15 | 0.65 0.02 | 0.49 | 0.52
170 0.45 | 0.14 | 0.59 0.02 | 0.46 | 0.48
175 0.40 | 0.13 | 0.53 0.02 | 0.42 | 0.44
180 0.35 | 0.11 | 0.46 0.02 | 0.38 | 0.40
190 0.24 | 0.08 | 0.32 0.01 | 0.27 | 0.28
200 0.18 | 0.06 | 0.24 0.01 | 0.22| 0.23

Table 5: Signal Summary
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3.4 Control Regions

Verifying that monte carlo simulation is properly modelled requires verification with data
in a region where signal is expected to be negligible-that is, ”control regions.” The control
regions we chose for both the NoZPeak and InZPeak trilepton regions contain minimal
signal (see table 6) so cutting them out of the analyses drastically cuts down the back-
ground to discriminate against in addition to providing a verification of modelling. They
are:

e NoZPeak Control Region: 10.0 < H, < 20.0
e [nZPeak Control Region: Number of Jets= 0

The topology of W H associated production in the trilepton channel also contains at
least three neutrinos (more if W — 7v, — I, v, ,v; decays are involved), resulting in
high missing energy values (see figure 12). Thus, a low . region is a natural choice for
a control of the NoZPeak trilepton analysis, which also drastically cuts down the Zv and
Fakes backgrounds.

Similarly, the topology of Z H associated production—while also having inherently high
Ky lends to a preference for at least one or two jets (see figures 30 and 17) since one of
the two Higgs-W-bosons decays hadronically. Only ~ 10% of the trilepton ZH signal is
present in the NJet= 0 bin, but much of it’s most dominant background, W27, is. Thus,
the NJet= 0 bin is a natural choice for the control region of the InZPeak trilepton analysis.
Unfortunately, there are several nefarious difficulties that arise from this choice that must
be discussed. First, four of the discriminating variables chosen in the neural network
treatment discussed in section 4 are undefined when NJet= 0 (though can be powerful
discriminators among those events that do have at least one jet, serving as yet another
argument for this choice of control region) and NJet must be excluded as a discriminating
variable as well since the control region allows it only one possible value by definition (a
variable cannot be used to discriminate background from signal when both background
and signal must have identical values for that variable). The neural network result for
the control region of InZPeak has the following removed from the list of discriminating
variables:

e NJet
e Ep of the leading jet

e AR between the W-lepton and the leading jet. Denote the two leptons with dilepton
invariant mass € [81.0,101.0] GeV (the definition of the InZPeak region) as the Z-
leptons, then the other lepton is denoted the W-lepton.

e Transverse mass of the vector sum of all jets

e Transverse mass of the W-lepton and the

12



Further, with the ¢ background being borderline negligible already, our monte carlo
sample of tt does not contain a single trilepton event in this control region. Summarily,
to obtain a neural network result for this InZPeak control region we had to retrain a
neural network on the signal region (NJet > 1) excluding both the five aforementioned
discriminating variables and the ¢t background.

To support the claim that this neural network result for the InZPeak control region is
valid, we first emphasize that the ¢ contribution to the signal region is only 0.02 events
expected in 4.8fb™! of data compared to a total background of 20.9 & 2.64. Second, we
chose 16 discriminating variables for the signal region, so losing these five is a serious but
not critical loss; the total correlation to target drops from 61.9% to 52.2%.

While this choice of control region poses challenges, we are rewarded with both a cut
that excludes a large portion of the backgrounds with minimal signal loss and with several
powerful discriminating variables that would be ill-defined otherwise.

Process NoZPeak InZPeak
WZzZ 0.70 £ 0.10syst | 27.7 £ 3. 784yt
Z7 0.66 £ 0.09gys¢ | 3.10 £ 0.42
Zy 16.8 & 3. TTgyst | 4.82 4 108y
Fakes (WW, W+Jets, Z+Jets) | 6.34 £ 1.904y | 7.22 £ 2.164ys
tt 0.005 -

W H160 Signal 0.02 0.05 £ 0.007gyst
Z H160 Signal 0.01 0.06 £ 0.007gyst
Background Stack 24.5 £ 4264y | 42.8 £ 5.02
data(4.8 fb~1) 22 45

Table 6: Event Count of the Control Regions.

We provide here the fits for the discriminating variables in the NoZPeak and InZPeak

trilepton control regions to data’.

"Detailed definitions of each variable are provided in section 4.
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Figure 2: NoZPeak Control Region (10.0 GeV < K, < 20.0 GeV) and InZpeak Control
Region (NJet= 0) neural net results against samples trained on signal regions.
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4 Results

4.1 Neural Net Training and Results

The trilepton H — WW analyes rely on the NeuroBayes neural network package to
discriminate signal from background; we do not attempt the Matrix Element method in
this study. We use 13 input variables for the NoZPeak analysis and 16 for the InZPeak
analysis. The neural net results can be seen in figures 3, 4, 5, and 6.

Because the interaction topology under consideration involves three leptons and also
because we do not separate the analyses by jet bin (aside from reserving the NJet=0 bin
for the InZPeak control region), the signatures of the signal regions under consideration
involve many potentially complex variables whose discriminatory power must be explored.
As such, a larger than usual quantity of discriminating variables are used to train the
NeuroBayes neural nets and we have found no reason yet to believe that fewer variables
would be any benefit.

NoZPeak Variable Descriptions/Details:

e AR Db/w Opp. Sign Close Leptons: With three leptons there are three possible pair-
ings of leptons. Events with all three leptons having the same sign are rejected from
this analysis, so every event has two possible pairings of opposite-signed leptons.
Of those two pairings, this variable is the AR value of the pairing with lower AR
value.

e H,: Missing Transverse Energy
e Hp: Sum of the transverse energies of all three leptons, the K, and all jets.

e Dimass b/w Opp. Sign Close by ¢: Dilepton invariant mass of the opposite-signed
lepton pair that is closer in the ¢ coordinate.

o A¢(Lep2,K;): The magnitude of the difference in ¢ between the 2°¢ lepton by pr
and the H.

e Inv. Mass(Lep3,H;,Jets): Invariant mass of the vector sum of the 3*¢ lepton, K,
and Jets.

e my(Leptons, Ky, Jets): Transverse mass of the vector sum of all three leptons, H,
and all jets.

e pr of the 2" lepton by pr.

e AR Opp. Sign Far Leptons: With three leptons there are three possible pairings
of leptons. Events with all three leptons having the same sign are rejected from
this analysis, so every event has two possible pairings of opposite-signed leptons.

15



Of those two pairings, this variable is the AR value of the pairing with higher AR
value.

mq Trilepton Mass: Transverse mass of the vector sum of the three leptons.

NJet: The number of jets in the event. For this use of NJet, all events with NJet >
2 jets are thrown into the NJet = 2 bin.

mr (Lep3, H;): Transverse mass of the vector sum of the 3'¢ lepton and the K.

Inv. Mass(Lepl,Lep2,H;): Invariant mass of the vector sum of the 15 lepton, 2™
lepton, and K.

InZPeak Variable Descriptions/Details:

NJet: The number of jets in the event.
Hy: Missing Transverse Energy

Lead Jet Ep: Transverse energy of the leading jet. Note that the control region for
InZPeak is NJet = 0, so all events in the signal region must have at least one jet by
definition. Also, for this use of NJet, all events with NJet > 2 jets are thrown into
the NJet = 2 bin.

AR(W-Lep, Lead Jet): The InZPeak region is defined by having one lepton paring
(opposite signed, same flavor) near the Z boson mass. Denote the one other lepton
not in this pairing as the W-lepton. This variable is then the AR between the
W-lepton and the leading jet.

A¢(Leptons, Hr): A¢ between the vector sum of the three leptons and the H.
Hrp(Leptons, K, Jets): Sum of Er of all three leptons, H,, and all jets.

mr(Leptons, B, Jets): Transverse mass of the vector sum of all three leptons, H,
and all jets.

A¢(Lep2,H;): The magnitude of the difference in ¢ between the 2°¢ lepton by pr
and the H.

AR b/w Opp. Sign Close Leptons: With three leptons there are three possible pair-
ings of leptons. Events with all three leptons having the same sign are rejected from
this analysis, so every event has two possible pairings of opposite-signed leptons.
Of those two pairings, this variable is the AR value of the pairing with lower AR
value.

Trimass:The invariant mass of the vector sum of the three leptons.
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Inv. Mass(Lep3,Hy,Jets): Invariant mass of the vector sum of the 3™ lepton, K.,
and Jets.

Dimass(W-Lep,H;): The InZPeak region is defined by having one lepton paring
(opposite signed, same flavor) near the Z boson mass. Denote the one other lepton
not in this pairing as the W-lepton. This variable is then the invariant mass of the
vector sum of the W-lepton and the K.

my Jets: Transverse mass of the vector sum of all jets. Note that the control region
for InZPeak is NJet = 0, so all events in the signal region must have at least one
jet by definition.

my(W-Lep,H,): Transverse mass of the vector sum of the W-lepton and the H.

A¢(Z-Leptons,W-Lepton): AR between the vector sum of the two leptons whose
dimass is near the Z-boson mass, and the other lepton.

AR Opp. Sign Far Leptons: With three leptons there are three possible pairings
of leptons. Events with all three leptons having the same sign are rejected from
this analysis, so every event has two possible pairings of opposite-signed leptons.
Of those two pairings, this variable is the AR value of the pairing with higher AR
value.
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Variable(NoZPeak) 110 | 120 | 130 140 145 150 | 155
AR b/w Opp. Sign Close Lept. 12.4 | 40.8 | 9.69 40.2 41.4 40.8 | 43.1

T 26.0 | 21.2 | 338 25.7 26.2 28.1 | 28.9
Dimass b/w Opp. Sign Close by ¢ | 41.0 | 14.9 | 29.7 | 9.52 8.14 12.7 | 11.6
Hr 3.38 | 3.82| 16.1 11.9 13.1 9.14 | 9.38
A¢(Lep2,H ) 577 1648 | 7.60 | 6.67 | 6.47 | 7.74 | 894
mr(Leptons, B, Jets) (0.38) [ 2.08 | 4.84 | 546 | 5.99 | 6.33 | 7.42
pr2™ Lepton 2.77 | 5.06 | 3.26 | 5.12 | 3.08 | 4.57 | 6.88
Inv. Mass(Lep3,H,Jets) 2.05 | 246 | 4.34 4.51 4.57 7.84 | 6.64
AR Opp. Sign Far Lept. 924 | 11.0 | 126 | 9.93 | 109 | 6.31 | 6.67
NJet 724 1730 | 3.64 3.16 3.27 3.04 | 3.11
myp Trilepton Mass (0.52) | 2.62 | 3.78 | 3.85 | 6.62 | 6.67 |4.44
mr (Lep3, Hy) 3.38 | 2.13 | (0.80) | (0.04) | (0.90) | 2.32 | 3.17
Inv. Mass(Lepl,Lep2,H ) 838 | 834 | 451 | 269 | 416 | 1.75 | 1.56
Variable(NoZPeak) 160 | 165 | 170 175 180 190 | 200
AR b/w Opp. Sign Close Lept. 45.7 | 47.1 | 31.5 29.0 27.3 19.5 | 17.3
Hr 29.8 | 11.3 | 45.9 46.4 47.0 48.0 | 21.6
Dimass b/w Opp. Sign Close by ¢ | 12.4 | 10.9 | 8.61 8.11 7.31 6.78 | 5.14
Hr 10.5 | 11.3 | 6.05 13.4 16.4 22.7 | 49.7
A¢(Lep2,H ) 9.49 | 881 | 9.19 | 941 | 7.70 | 7.37 | 6.58
mr(Leptons, B, Jets) 8.08 | 857 | 993 | 835 | 867 | 9.54 | 10.7
pr2™ Lepton 7.85 | 459 | 848 | 857 | 4.66 | 828 | 8.45
Inv. Mass(Lep3,H,Jets) 6.99 | 7.63 | 12.7 | 10.0 | 8.67 | 872 | 7.34
AR Opp. Sign Far Lept. 6.30 | 5.65 | 5.79 | 5.18 | 525 | 554 | 5.01
NJet 458 |3.09 | 3.67 | 3.36 | 3.50 | 2.72 | 2.25
my Trilepton Mass 459 | 7.55 | 4.65 | 4.57 | 770 | 3.98 | 3.23
mr (Lep3, Hy) 3.77 | 4.14 | 4.46 | 3.64 | 3.68 | 3.05 | 1.85
Inv. Mass(Lepl,Lep2,H ) 3.15 | 1.98 | 1.52 | (0.90) | (0.77) | (0.26) | 1.67

Table 7: NoZPeak Significance: The variables are ordered by their significance as discrim-
inating variables for the NeuroBayes neural net trained at the 160 GeV signal. Values in
parentheses (*) indicate the input variable was not used for the given mpy.
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Variable(InZPeak) 110 120 130 140 145 150 | 155
NJet 23.6 29.7 33.2 37.6 39.6 | 41.1 | 43.2
. 8.07 9.35 13.4 22.7 23.3 | 23.6 | 24.8
Lead Jet Er 3.76 7.23 14.5 12.0 16.3 | 17.3 | 17.9
AR(W-Lep, Lead Jet) 19.2 17.4 16.7 13.6 13.8 | 13.0 | 12.7
A¢(Leptons, H) 21.3 20.5 19.1 10.9 10.2 | 124 | 11.6
mr(Leptons, B, Jets) 3.50 1.05 5.96 5.86 4.93 |3.93 ] 9.26
A¢(Lep2,H) 442 | 364 | 454 | 531 | 481 |4.85|5.60
AR b/w Opp. Sign Close Lept. | 13.8 13.9 10.7 14.6 11.7 | 109 | 7.10
Trimass 11.6 9.50 9.14 6.83 6.96 | 6.96 | 6.35
Inv. Mass(Lep3,H,Jets) 729 | 278 |(0.23) | 1.91 | 147 |1.94 | 4.67
Hp(Leptons, B, Jets) (0.48) | (0.95) | 2.68 | 6.38 | 7.14 |6.93 | 5.81
my Jets (1.01) | 2.38 | (1.01) | (0.98) | (0.18) | 2.36 | 2.49
Dimass(W-Lep, B7) 2.02 | (0.07) | 205 | 2.80 | 2.76 | 2.34 | 3.09
mr(W-Lep, By) 6.55 | 4.46 | (0.72) | 1.78 | 3.44 | 3.99 | 3.56
AR Opp. Sign Far Lept. 982 | 3.25 | 260 | 240 | 2.36 | 2.61 | 1.83
A¢(Z-Leptons,W-Lepton) 1.55 | (1.82) | 143 | (1.19) | 2.54 | 2.64 | 2.09
Variable(InZPeak) 160 165 170 175 180 | 190 | 200
NJet 45.8 46.6 46.8 47.4 25.8 | 24.7 | 22.2
Ky 26.7 27.8 27.8 28.4 15.0 | 13.9 | 12.7
Lead Jet Er 19.2 19.0 19.5 20.1 12.2 | 11.6 | 10.6
AR(W-Lep, Lead Jet) 13.2 12.7 12.1 11.0 7.84 | 5.53 | 4.48
A¢(Leptons, K1) 12.0 13.2 12.1 11.0 9.72 | 7.55 | 6.82
mr(Leptons, B, Jets) 862 | 9.39 | 9.09 | 852 | 10.9 |9.81]9.26
A¢(Lep2, ) 819 | 811 | 8.02 | 6.67 | 548 |5.17 | 4.52
AR b/w Opp. Sign Close Lept. | 6.54 6.06 5.23 4.95 4.52 | 3.63 | 2.81
Trimass 0.84 5.04 4.87 4.87 4.52 | 3.07 | 2.66
Inv. Mass(Lep3,H,Jets) 5.84 6.64 6.60 6.23 6.81 | 6.93 | 7.32
Hp(Leptons, K1, Jets) 5.02 5.86 7.97 9.66 51.1 | 4.4 | 58.7
mrp Jets 4.28 4.58 4.88 4.79 431 | 3.38 | 2.53
Dimass(W-Lep, By) 408 | 422 | 468 | 454 | 3.88 |3.98]3.25
mr(W-Lep, H.y) 311 | 262 | 328 | 2.68 | 3.24 |2.93 | 3.00
AR Opp. Sign Far Lept. 2.94 2.61 2.34 2.02 2.45 | 1.40 | 1.32
A¢(Z-Leptons,W-Lepton) 260 | 259 | 294 | 1.98 | 207 |1.32|1.35

Table 8: InZPeak Significance: The variables are ordered by their significance as discrim-
inating variables for the NeuroBayes neural net trained at the 160 GeV signal. Values in
parentheses (*) indicate the input variable was not used for the given my;.
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4.2 Limit Summary

Systematic Uncertainty | WZ 77 Zry tt | Fakes | WH ZH
DiboAcc 0.100 | 0.100

TtbarAcc 0.100

EWKHiggs 0.100 | 0.100
FlatPDF 0.027 | 0.041 | 0.041* | 0.021 0.012 | 0.009
LeptonID 0.020 | 0.020 | 0.019* | 0.020 0.020 | 0.020
TriggerEff 0.021 | 0.021 | 0.034* | 0.020 0.021 | 0.021
Fake 0.300

Luminosity 0.059 | 0.059 | 0.059* | 0.059 0.059 | 0.059
MCRunDep 0.050 | 0.050%*

Z~ Acc.* 0.110%*

W~ Scale 0.120%*

ODiboson 0.060 | 0.060

Ot 0.100

ovH 0.050 | 0.050
oz 0.050%*

Table 9: Systematic Uncertainties: Standard values for systematics used in other H —
WW analyses are used wherever applicable. Since Z7 is a new background contribution

replacing Drell Yan in the trilepton analyses, new values had to be determined and are
marked with (*).

The results of this trilepton analysis present a significant contribution to the H — WW
combined result. We are poised to solidify and expand the window of standard model
Higgs boson exclusion within 163 < my < 166 GeV®. In the 160 GeV bin, the trilepton-
NoZPeak analysis limits are set at 8.91 times the expected standard model limit; the
trilepton-InZPeak analysis is set at 12.5 times the expected standard model limit; and
the combined trilepton analysis is set at 6.23 times the expected standard model limit.
Finally, for the combined H — WW analysis result, in the 165 GeV bin the limit drops
from 1.28" to 1.12. As such, we are poised to begin excluding the standard model Higgs
boson at 95% confidence level with CDF-only analyses in short order.

The limit calculations presented were computed with HWWLimit version of MCLimit.
Expected limits were calculated in each case with 10,000 iterations of 10,000 pseudoex-
periments (1000 iterations of 1000 pseudoexperiments performed 10 times), while 500,000
iterations were performed for the observed results. The systematic uncertainties used are
summarized in table 9. Most values used are standard to all H — WW analyses, but

8CDF Note 9998
9CDF Note 9928

24



CDF Run Il Preliminary

= 1 HWW Trilep-NoZPeak Expected

. HWW Trilep-NoZPeak + 10
I:l HWW Trilep-NoZPeak + 20

i m— HWW Trilep-NoZPeak Observed

[ L=48fb"

110 120 130 140 150 160 170 180 190 200
Higgs Mass (GeV)

Figure 7: Trilepton NoZPeak Region Limits

since Zv is a new background in this analysis there are several new systematics particular
to this analysis. First, note that the W+ background is already scaled down by 14% in
other H — WW analyses due to known mismodelling of photon conversions. We are us-
ing the same scale factor for the Z~ contribution since the same photon conversion affect
is assumed, as such we use the same systematic error associated with this scale factor.
Second, we have for W~ the systematic WgamAcc, which accounts for poor MC modeling
beyond leading order. Likewise, we assume the same error of 11% for a new ZgamAcc
systematic since both are modelled by the Bauer MC generator.
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Sensitivity(NoZPeak) | 110 | 120 | 130 | 140 | 145 | 150 | 155
T2 183 | 68.1 | 35.1 | 24.7 | 22.1 | 20.3 | 185
oy 131 | 483 | 25.3 | 17.7 | 15.7 | 14.6 | 13.2
Mediary 92.4 | 34.0 | 18.0 | 12.6 | 11.2 | 10.4 | 9.39
Loy 68.4 | 25.0 | 13.2 | 9.35 | 8.32 | 7.67 | 7.00
20/ 54.7 | 19.8 | 104 | 7.42 | 6.72 | 6.22 | 5.70
Observed 95.3 | 36.2 | 21.4 | 14.7 | 14.0 | 13.3 | 12.2
Sensitivity(NoZPeak) | 160 | 165 | 170 | 175 | 180 | 190 | 200
o 166 | 17.4 | 19.3 | 21.9 | 25.8 | 37.5 | 49.8
oy 12.0 | 125 | 138 | 15.6 | 18.2 | 27.1 | 35.8
Mediary 8.66 | 8.91 | 9.89 | 11.2 | 13.0 | 19.3 | 25.3
oy 6.48 | 6.73 | 7.49 | 8.43 | 9.68 | 14.3 | 18.6
20 5.35 | 5.60 | 6.17 | 6.90 | 7.98 | 11.7 | 15.0
Observed 11.2 [ 11.4 | 12.4 | 14.2 [ 17.7 | 25.0 | 31.8

Table 10: Trilepton NoZPeak Region Expected Sensitivity
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Sensitivity(NoZPeak) | 110 | 120 | 130 | 140 | 145 | 150 | 155
2o 325 | 114 | 56.5 | 36.7 | 33.1 | 29.2 | 26.3
o) 227. | 82.0 | 40.6 | 26.6 | 23.5 | 21.1 | 19.1
Mediary 159 | 56.7 | 28.4 | 18.6 | 16.5 | 14.9 | 13.5
R/ 114 | 40.7 | 20.5 | 13.6 | 12.0 | 10.9 | 9.97
"2 et 87.1 | 31.4 | 15.9 | 10.5 | 9.48 | 8.62 | 7.90
Observed/ 190 | 68.9 | 43.2 | 23.9 | 24.8 | 19.8 | 16.3
Sensitivity(NoZPeak) | 160 | 165 | 170 | 175 | 180 | 190 | 200
2 24.7 | 24.6 | 26.2 | 28.8 | 31.1 | 43.5 | 524
o) 17.6 | 17.8 | 19.0 | 20.7 | 22.3 | 31.0 | 37.4
Mediayy 12.5 | 12.7 | 13.7 | 14.6 | 15.9 | 22.0 | 26.6
/A 9.37 | 948 | 10.2 | 11.0 | 11.9 | 16.4 | 19.8
"2 et 7.55 | 7.75 | 8.41 | 8.95 | 9.74 | 13.5 | 164
Observed/ 17.7 | 14.4 | 18.6 | 18.7 | 20.5 | 27.9 | 34.1

Table 11: Trilepton InZPeak Region Expected Sensitivity
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Figure 9: Trilepton Combined Limits

Sensitivity(NoZPeak) | 110 | 120 | 130 | 140 | 145 | 150 | 155
20 153 | 54.9 | 284 | 19.2 | 169 | 15.5 | 13.6
R/ 107 | 39.2 | 20.0 | 13,5 | 122 | 11.0 | 9.88
Mediayy 75.3 | 27.6 | 14.1 | 9.51 | 8.50 | 7.75 | 6.94
1o 04.8 | 20.1 | 10.2 | 6.92 | 6.21 | 5.62 | 5.06
2 42.3 | 153 | 7.89 | 5.34 | 4.81 | 4.43 | 3.99
Obser"e‘%TSM 78.8 1294 |19.7 | 11.3 | 11.8 | 10.2 | 8.62
Sensitivity(NoZPeak) | 160 | 165 | 170 | 175 | 180 | 190 | 200
27 123 | 12.0 | 141 | 15.3 | 175 | 255 | 315
Hlof 883 9.07 | 991 | 11.0 | 124 | 18.0 | 22.7
Media%TSM 6.23 | 6.42 | 7.03 | 7.74 | 8.71 | 12.7 | 16.0
oy 461 | 475 | 5.24 | 572 | 6.45 | 9.34 | 11.7
20/ 372 | 381 | 418 | 4.55 | 5.11 | 7.42 | 9.28
Obser"e‘yosM 870 | 7.52 | 9.10 | 9.91 | 12.1 | 16.5 | 20.4

Table 12: Trilepton Combined Expected Sensitivity
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Figure 10: HWW+Trilepton Combined Limits

Sensitivity(NoZPeak) | 110 | 120 | 130 | 140 | 145 | 150 | 155
20 50.2 | 174 | 8.63 | 5.58 | 4.81 | 3.97 | 3.25
o 35.3 | 122 | 6.02 | 3.88 | 3.37 | 2.79 | 2.26
Mediay 23.6 | 8.20 | 4.05 | 2.60 | 2.24 | 1.88 | 1.53
R/ 15.9 | 550 | 272 | 1.75 | 1.51 | 1.27 | 1.04
29 et 11.0 | 3.80 | 1.89 | 1.21 | 1.06 | 0.89 | 0.72
Observe(yaSM _ _ _ _ _ _ _
Sensitivity(NoZPeak) | 160 | 165 | 170 | 175 | 180 | 190 | 200
2o 246 | 2.35 | 2.82 | 3.33 | 4.03 | 6.31 | 8.73
o 1.72 1 1.65 | 1.97 | 2.31 | 2.81 | 4.39 | 6.03
Mediay 1.16 | 1.12 | 1.33 | 1.57 | 1.90 | 2.90 | 4.00
R/ 0.80 | 0.76 | 0.91 | 1.06 | 1.27 | 1.96 | 2.67
20 0.56 | 0.55 | 0.65 | 0.74 | 0.89 | 1.35 | 1.86
Observex}/aSM _ _ _ _ _ _ _

Table 13: HWW w/ Trileptons Combined Expected Sensitivity
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Figure 11: NoZPeak Signal Region (10.0 GeV < Ky < 20.0 GeV): AR Opp. Sign Close
Leptons, K.
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Figure 12: NoZPeak Signal Region (10.0 (;:5)92\/ < H; < 20.0 GeV): Hry(all leptons, B,
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Figure 13: NoZPeak Signal Region (10.0 GgV < H, < 20.0 GeV): A¢ between the 274
lepton and H, Inv. mass of the 3™ lepton+#+Jets.
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Figure 14: NoZPeak Signal Region (10.0 G%X < H; < 20.0 GeV): mp(Leptons, B, Jets),
pr of 2°4 Lepton
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Figure 15: NoZPeak Signal Region (10.0 %%V < Hy < 20.0 GeV): AR Opp. Sign Far
Leptons, my Trilepton Mass.
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Figure 16: NoZPeak Signal Region (10.0 %
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Figure 17:  NoZPeak Signal Region
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Figure 18: InZPeak Signal Regié)él (NJet # 0): Hp, Lead Jet Er.
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Figure 19: InZPeak Signal Region (NJet #@: AR(W-Lep, Lead Jet), A¢(Leptons,Hr).
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Figure 21: InZPeak Signal Region (NJet 7é4(1): A¢(Lep2,H;), AR b/w Opp. Sign Close

Leptons.
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Figure 22: [InZPeak Signal Region (NJ@ # 0): Trilepton Invariant Mass, Inv.
Mass(Lep3, B, Jets).
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Figure 23: InZPeak Signal Region (Nzlgt # 0): Dimass(W-Lep,Hy), mr Jets.
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Figure 24: InZPeak Signal Region (NJet4i£ 0): my(W-Lep,Hr), Ap(Z-Leptons, V-
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Figure 25: InZPeak Signal Region (NJet # 0): AR Opp. Sign Far Leptons.
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5.2 Appendix: Input Variables in Control Regions
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Figure 26: NoZPeak Control Region (10.0 GeV < K, < 20.0 GeV): AR Opp. Sign Close
Leptons, Ky, Hr(all leptons, H;, all jets).
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Figure 27: NoZPeak Control Region (10.0 GeV < K, < 20.0 GeV): Dimass Opp. Sign
Leptons (closer pair in ¢), A¢ between the 2°¢ lepton and K, Inv. mass of the 3™
lepton+ Hp+Jets.
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Figure 29: NoZPeak Control Region (10.0 GeV < H; < 20.0 GeV): mp Trilepton Mass,
NJet, mr (Lep3, Hr ).
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Figure 32: InZPeak Control Region (NJet=0): A¢(Lep2,H,), AR b/w Opp. Sign Close
Lept, trilepton invariant mass.
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Figure 33: InZPeak Control Region (NJet=0): Inv. Mass(Lep3,H,Jets), Dimass(W-
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Figure 34: InZPeak Control Region (NJet=0): A¢(Z-Leptons,W-Lepton), AR Opp. Sign
Far Leptons.

95



