Trigger Hardware GCT Muon and Future Developments

System Design and Status

Matt Stettler, Magnus Hansen, Grefory Iles, John Jones

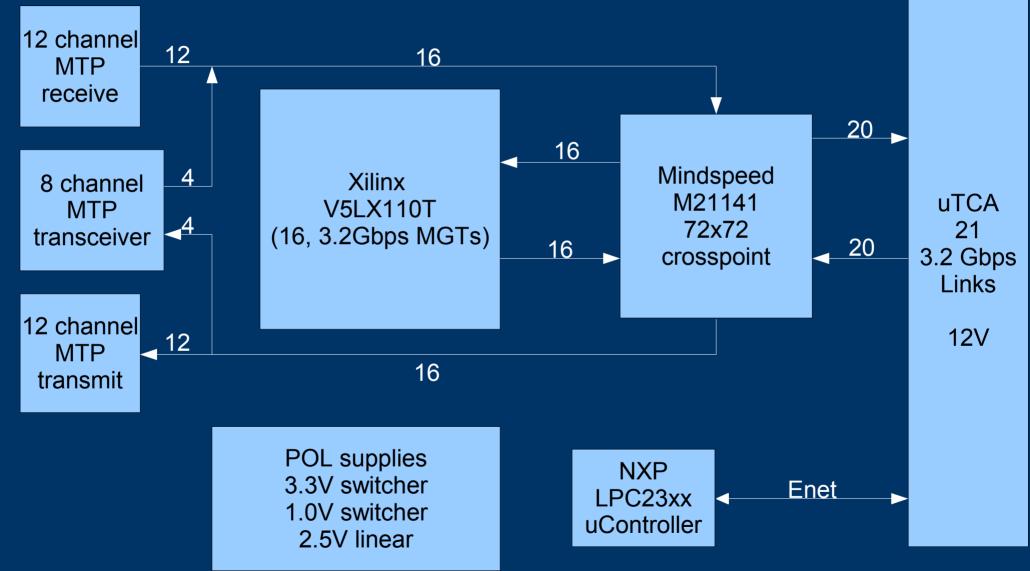
11/2007

Primary Design Goals

- Modular
 - Reasonably fine grained
 - Smaller circuit boards
 - Easier and less expensive to develop
 - Should scale well
- Well defined internal interfaces
 - Allows modules to be developed independently
 - Perhaps shared across projects
 - At least electrically compatible
- Flexible in both logic and interconnect
 - Retain flexibility of FPGAs
 - Add complementary data routing flexibility
 - Modify data flow without altering hardware
 - Give the ability of dynamic reconfiguration

Relevant Current Technology

- Large FPGAs with built in SERDES links
 - Very high density logic
 - SERDES I/O allows physical concentration of data
 - 16-24 3+Gbps links available on large devices
 - Normal I/O pins support 1+Gbps links
- LVDS/CML crosspoint switches
 - Up to 144x144 non blocking matrices
 - Asynchronous, Protocol agnostic
 - Multi rate switching supported intrinsically
 - Currently available at 4+Gbps, 10Gbps announced
- Fractional-N frequency references
 - Wide range (10 700 + MHz)
 - Meets Xilinx serial link reference specifications
 - Allows interoperability with many standards


Implementation

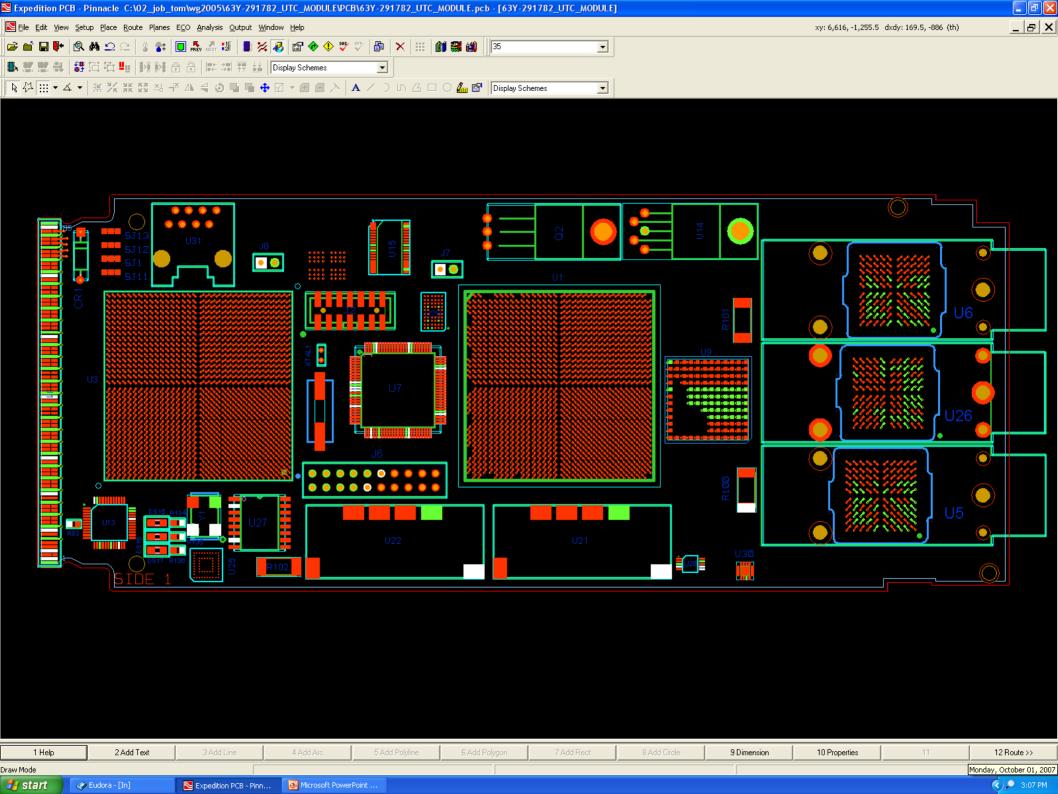
- Micro TCA based, 12 slot chassis
 - 20 high speed links per slot
- Processing module
 - Based on Xilinx V5LX110T
 - Mindspeed M21141 72x72 crosspoint
 - MTP Fiber interface (SNAP-12)
 - Local precision serial link reference
- Backplane
 - Commercial unit possible, but limiting
 - Can host Processing modules
 - Custom unit based on Mindspeed M21161 144x144
 - Programmable topology
 - 500 Gbps maximum bandwidth
 - Includes simple uTCA hub functionality
 - External and internal reference oscillators

uTCA Infrastructure etc

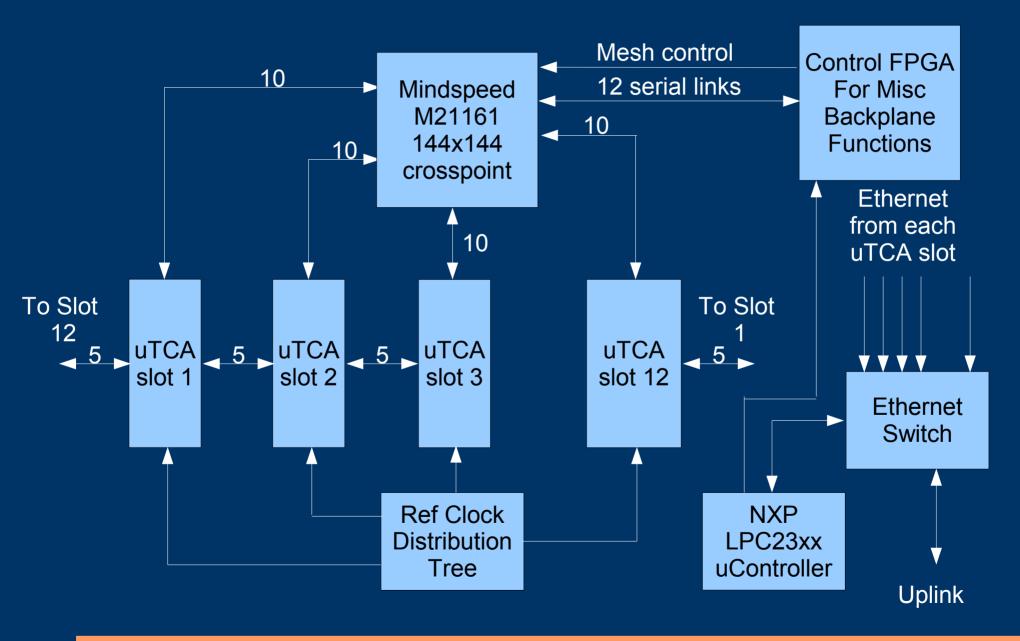
- Sequenced power up
 - Intelligent power management by backplane/hub
 - Sense circuitry detects module insertion
 - Microcontroller powered up first
 - Known as "management power"
 - Main power supplied after software handshake
 - Our backplane will initially implement dumb power
 - Eventually will need more formal attention
- Slow control interface
 - Based on Ethernet protocols
 - Implemented in NXP 2368 by software
 - Prototype TCP/IP sockets and Telnet interfaces running
 - Eventually will need more formal attention

Processing module Block diagram

Key Features of Processing Module

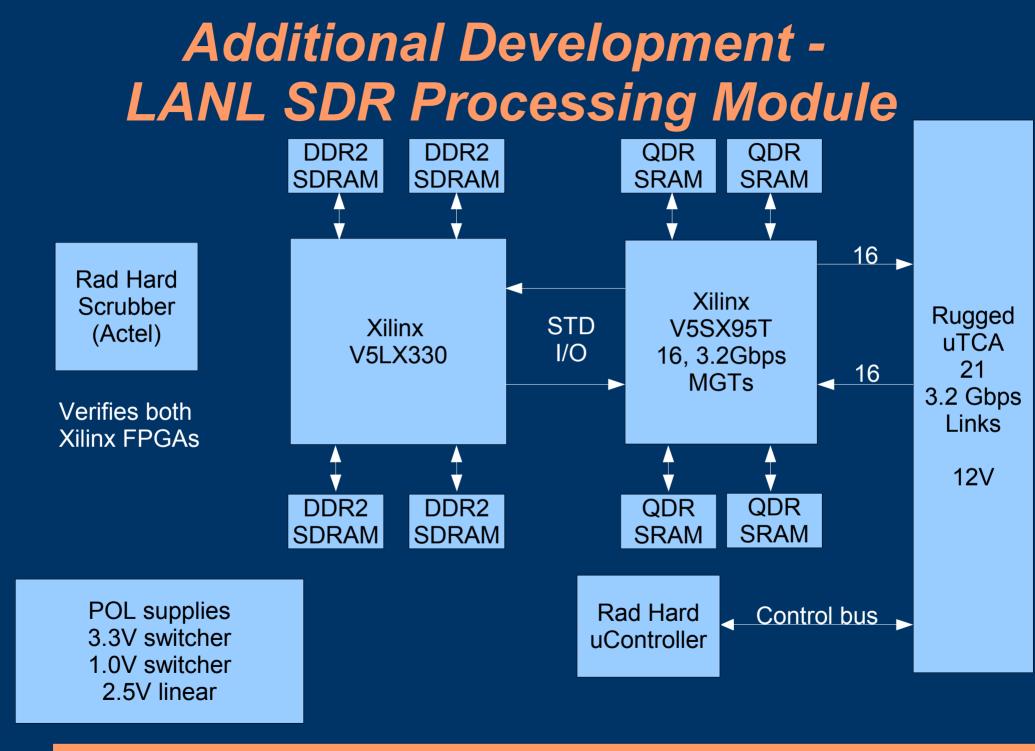

- Xilinx Virtex 5LX110T FPGA
 - 16 low power MGTs, Superior logic density/speed
 - Standard I/O 1Gbps capable
- Data I/O direct from fiber
 - 16 channels full duplex @ 3.2 Gbps
- Crosspoint routes to FPGA, backplane, and fiber
 - 1:N data replication supported at wire speed
 - FPGA output data sent to backplane or fiber
 - Switches clocks as well as data
 - Dedicated low jitter clock tree provided for MGT reference
 - Clock output to backplane from crosspoint
- Slow control via standard Ethernet
 - Standard Ethernet protocols supported by NXP 2368
 - Connection provided for stand alone operation

Additional Features


- These features are unused in the Muon System
 - Future use, no development for GCT
- Module development is co-funded by Los Alamos
 - Intended for signal processing research
 - Independent funding for this application
- Additional RAM
 - 512MB DDR2 SDRAM added to module
 - Two banks of 128Mx16 @>500MHz
 - Enables sophisticated SoC possibilities
 - ~ 100 high speed (500 MHz), length matched traces
- Initially unused Xilinx V5 features
 - PCIExpress endpoint
 - GigE MAC

Advanced PCB Techniques

- Los Alamos has evaluated 2 new Techniques
 - Standard process for current fabrication technology
 - Less demanding than multi laminate process used on leaf
- Micro Vias
 - Penetrate several layers (2-3)
 - Provide lowest inductance/best impedance match
 - Useful for both power and high speed signals
 - Laser drilled
- Via in pad
 - Micro via or drill via
 - Eliminates BGA escape pattern for higher performance
- Both technologies are being used in the design
 - Vendor (DDI) considers this the lowest risk approach



Custom Backplane block diagram

Key Features of Custom Backplane

- Active backplane based on crosspoint switches
 - Mindspeed M21161 (4.1 Gbps)
 - Active backplane eliminates congestion
- Simple clock tree
 - Micrel Sy87739 Fractional-N synthesizer
 - 10-700+MHz range for flexible system operation
 - External input
 - 1 clock/slot driven by crosspoint
 - Suitable for general purpose clocking
- Double height, ¹/₂ crate width
 - Link routing easier
 - Use inserts to accommodate single high modules
 - Better overall density per crate
- 20 links/slot for high speed data communication

System Design Challenge

- Many Large FPGAs pose several challenges
 - Firmware development
 - Large, complex designs
 - Modular components desirable
 - Implies more disciplined collaboration
 - Distribution and Configuration control non trivial
 - System state of health
 - Verify all FPGAs loaded with proper firmware
 - Check to insure configuration is intact
 - Cross section will be considerable
 - SEUs will occur
- Numerous high speed links
 - Robust operation required
 - Avoid using links in electrically non-standard modes
 - Consider tagging data to facilitate automatic recovery

FPGA Design Techniques

- Use software system development as a model
 - Create a repository for shared modules
 - Hosted at a common point (could even be Google?)
 - Open source, accessible to all
 - As in software, this could consume much manpower
 - Need to establish and enforce reasonable goals
- Should include self verification in all designs
 - Xilinx V2 and above have internal config interface
 - Part can read it's own config memory
 - Checksum verification possible
 - Several levels of checking are possible
 - Based on granularity of check
 - Parts are not 100% checkable
 - 90% confidence achievable
 - Can't check distributed or block RAM
 - This is improving with latest silicon

Link Management – GCT Lessons

- Link PLL reference critical
 - Variable (VCXO) references should be avoided
 - Links perform coarse calibration at initialization
 - Drift eats directly into link frequency margin
 - Require reinitialization to recover from excessive drift
 - This is a non-specified parameter on most hardware
 - GCT runs links at 100MHz fixed frequency
 - ~80MHz data rate
 - Firmware inserts "idle" commas when required
- Avoid hard synchronization to timing system
 - Compound errors occur during timing "hiccups"
 - Lost link sync and data synchronization
 - Complicates fault characterization and recovery
 - Links need to be transparent data pipes
 - Design to manufacturers specs for maximum reliability

Link Management – Data Format

- Following GCT lessons provides an opportunity

 Implement to the extent possible
- Run links as fast as possible on fixed reference
 - Reduces intrinsic latency
 - Use extra bandwidth for robust features
 - CRC
 - Sequence number or time tag
 - Data type, source, etc.
- Variable topology complicates synchronization
 - Sequence information embedded in data a benefit
 - Allows realignment
 - Can enable firmware compensation for dropped packets
- Advanced techniques possible
 - Zero suppression and data compression
 - Currently being considered for Los Alamos work