Neutrino Mass & the Lyman-a Forest

Kevork Abazajian University of Maryland

INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

 Power spectrum of cosmological density fluctuations

 $P(k) = \langle |\delta_k|^2 \rangle$

• Primordial Harrison-Zeldovich: from scale invariance

 $P(k) \propto k$

- Natural solution to perturbation spectrum: self-similar evolution
- Predicted by inflation

 $P(k) \propto k^n$

The Cosmological Matter Power Spectrum

Perturbations enter horizon:

<u>k</u> →

Distinguishing Features in the Power Spectrum

 I. Shape Information: Galaxy Surveys (Future: Weak Lensing Surveys)

 $\Delta P(k)$

P(k)

 Relative Amplitude Information: CMB plus Lyman-alpha Forest, Galaxy Bias

(Martin White)

Forecast Precision Cosmology: PLANCK

The Primordial Spectrum: <u>Precision</u> Determination <u>at Large Scales</u>

PLANCK + SDSS LRG: (Eisenstein, Hu, Tegmark 1998)

- $A = 2.4450 \pm 0.0085 \ (0.35\%)$
- $n = 0.9600 \pm 0.0077 \ (0.8\%)$

forecast!

 Ω_m Degeneracy

The Onset of Nonlinearity at Small Scales

Example Lyman-alpha Forest Flux Spectrum

The SDSS Ly- α Flux Power Spectrum Measurement

- Simply a 1D power spectrum of the flux in relevant bins
- However, power is measured simultaneously in the:
 - the transmitted flux/absorption
 - intrinsic quasar spectrum variation
 - *sky, continuum quasar, and count noise*
- $S/N \sim 3$
- Leads to a need to accurately disentangle sources of power and noise in the measurement

Lyman-alpha Forest Constraints on m_{ν}

Only public set: McDonald et al. (2006) SDSS $P_F(k)$ Measurement

WMAP_{+ACBAR+CBI} + SDSS + HST: ν mass limits

Summary of Cosmological Neutrino Mass Constraints

Problems in Temperature Requirements of the IGM? (CDM & WDM analysis)

Viel & Haehnelt (2005); Viel et al 2006

Very high T_0 ~35000 K

T impacts structure of HI Ly-a Forest

Abazajian, Lidz, Ricotti, in prep.

The SDSS Ly- α Flux Power Spectrum Measurement

- Simply a 1D power spectrum of the flux in relevant bins
- However, power is measured simultaneously in the:
 - the transmitted flux/absorption
 - intrinsic quasar spectrum variation
 - *sky, continuum quasar, and count noise*
- $S/N \sim 3$
- Leads to a need to accurately disentangle sources of power and noise in the measurement

SDSS Lyα Flux Power & Noise

SDSS Ly α Flux Power & Noise k-bin #10

SDSS Ly α Flux Power & Noise k-bin #21

Done for each k at each z

Noise-Bias Quantification Dependence

Summary of Cosmological Neutrino Mass Constraints

Estimating Upcoming Cosmological Neutrino Mass Constraints

 $\frac{\Delta P}{P} \approx 1\% \approx -12 \frac{\Omega_{\nu}}{\Omega_{m}}$

 $\Omega_{\nu} \approx \frac{\sum m_{\nu_i}}{93 \ h^2 \ \text{eV}}$

Hu, Eisenstein & Tegmark 1998; Abazajian & Dodelson 2003

$\implies m_{\nu} \lesssim (1\%/12) \times \Omega_m (93h^2 \text{ eV})$

 $\implies m_{\nu} \lesssim 0.01 \text{ eV}$

Kaplinghat et al PRL 2003 (CMB WL) Wang et al PRL 2005 (WL Clusters) De Bernardis et al. 2009 (Opt. WL)

Summary

- The Lyman-alpha forest is a sensitive probe of gas and dark matter clustering at small scales.
- However, the Lyman-alpha forest may not be as robust as a precision cosmology tool as originally proposed. Degeneracies in the gas temperature-density relation, allowed conservatively to vary, lower sensitivities.
- The SDSS Lyman-α forest flux power spectrum is has strong noise correlations with power that must be corrected appropriately, modifying the amplitude of power. An independent analysis is forthcoming.