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averaged 
neutrino

mass

  Need: low endpoint energy   Tritium 3H, (187Re)
very high energy resolution &

   very high luminosity &   MAC-E-Filter          
very low background                 (or bolometer for 187Re)

Direct determination of m(
e
) 

from  decay

 

decay: (A,Z) (A,Z+1)+  +  e-  + 
e

 

E.W. Otten & C. Weinheimer 

Rep. Prog. Phys. 

71 (2008) 086201

 electron energy spectrum:

dN/dE = K  F(E,Z)  p  Etot  (E0-Ee)   |U
ei
|2  (E0-Ee)2 – m( i)2 

(modified by electronic final states, recoil corrections, radiative corrections)
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Tritium experiments: source  spectrometer
MAC-E-Filter

    Magnetic Adiabatic Collimation + Electrostatic Filter
(A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

● Two supercond. solenoids
compose magnetic
guiding field

● adiabatic transformation:
     = E/B = const.

 parallel e- beam

● Energy analysis by
electrostat. retarding field
E = EB

min
/B

max
 

= 0.93 eV (KATRIN)

 sharp integrating transmission function without tails 
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  70 m 

is being set up at the Forschungszentrum Karlsruhe

windowless gaseous

molecular tritium source

tritium
retention

system

pre
spectro-

meter

main spectrometer detector

The Karlsruhe Tritium Neutrino 
experiment KATRIN

● very high energy resolution (E   1eV) source    spectrometer 
concept

● source opaque   dN/dt ~ A
source 

● magnetic flux conservation (Liouville) scaling law:

A
spectrometer  

/ A
source 

=  
 
B

source 
/ B

spectrometer
 = E / E = 20000 / 1

KATRIN Design Report

Scientific Report FZKA 7090)

Aim: m(
e
) sensitivity of 0.2 eV (currently 2 eV) 
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WGTS: tub in long superconducting solenoids
 9cm, length: 10m, T = 30 K

Tritium recirculation (and purification)
p

inj
 = 0.003 mbar, q

inj
 = 4.7Ci/s

allows to measure with near to 
maximum count rate using 

d = 5  1017/cm2

with small systematics

check column density by e-gun, T
2
 purity by laser Raman

T
2

Molecular Windowless Gaseous 
Tritium Source WGTS
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Molecular Windowless Gaseous 
Tritium Source WGTS

conzept:

2-Phasen Neon

(sied. Flüssigkeit)

2-phase 
Neon

beam pipe

Cu Tritium

heaters.c.
Helium
vessel

Kr

Conceptional design
2 phase Neon cooling with 2 phase Neon cooling with 

operating temperature: 27–28 K operating temperature: 27–28 K 

• spatial (homogeneity):   0.1% 

• time     (stability/hour):    0.1% 

T ≤ ± 30 mK !

WGTS has 

been ordered in 

Dec. 2004

Kn<<1:
Hydrodynamic regime 

             Kn~1: transitional 
flow

   Kn>>1: Free molecular regime
beam 
tube

Ø=90mm

S. Grohmann,

Cryogenics 49, 

No. 8 (2009) 413
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vacuum vessels DPS1

M1,2,3 coil winding finished

 | G. Drexlin | v2008

WGTS under construction

WGTS­demonatrator 

will arrive spring 2010
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ISS Glove box

Inner Loop
Outer Loop

FIRC

PIRCA±

from TLK Isotope 
Separation System

Palladium
Membrane Filter

Pure T2
Buffer
Vessel

Pressure
Controlled

WGTS
Buffer
Vessel

Pure Q2

Source tube to DPS2-F and CPS

Differential Pump Cascade
Differential 
Pump Cascade

Transfer
Pump

to TLK Tritium Recovery
 and Purification System

Gaseous
Waste
Buffer
Vessel

Tritium loops

Inner loop:

stable (±0.1%)

tritium

injection

Outer loop:

high (>95%)

and 

stable (±0.1%)

tritium

purity
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Transport and differential 
& cryo pumping sections

Molecular windowless
gaseous tritium source

< 2.5 10-14 mbar l/s

T2-injection 1.8 mbar l/s (STP)

= 1.7*1011 Bq/s =  40 g/d

Differential
pumping

  10-7 mbar l/s

    adiabatic electron guiding & T2 reduction factor of ~1014   

Cryogenic
pumping

with Argon snow
at LHe temperatures

(successfully tested with the 
TRAP experiment)

FT­ICR Penning traps to

measure ions from WGTS
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Arrival of DPS2-F at Karlsruhe: 
July 15, 2009

FT-ICR Penning traps:

M. Ubieto-Diaz et al., 

Int. J. Mass. Spectrom. 

288 (2009) 1-5
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CPS: cryogenic pumping section

 cryosorption of T2 by Ar frost
 magnetic guiding field B = 5.6 T
 specification finished
 estimated delivery 2010

TRAP: TRitium Argon frost Pump

HT, DT, T
2
, ...

LHe

Ar

T2
cryosorption

A
r frost

stainless steel

Cryogenic pumping section
and test of principle

O. Kazachenko et al.,

Nucl. Instr. Meth. A 587 (2008) 136

F. Eichelhardt et al.,

Fusion Science and Technology 54 (2008) 615
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10 10 e -/s

10 3 e -/s

10 -2 - 10 2 e -/s

Pre and main spectrometer

Main spectrometer:

● 10m, length 24m
 large energy resolution: E = 0.93 eV
 high luminosity: L = A

Seff
  /4 = A

analyse
 E/(2E) = 20 cm2

● ultrahigh vacuum requirements (background) p < 10-11  mbar (EHV)
● „simple“ construction: vacuum vessel at HV + „massless“ screening electrode

Pre spectrometer

● Transmission of electron with highest energy only 
(10-7 part in last 100 eV)

 Reduction of scattering probaility in main spectrometer
 Reduction of background

● only moderate energy resolution required: E = 80 eV

● test of new ideas (EHV, shape of electrodes, avoid and remove of trapped particles, ...)
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Electromagnetic design tests
at the pre spectrometer

ground electrodes

pre spec detector

2-dim scanning e-gun

pre spectrometer

transmission function tests
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Main Spectrometer – Transport
to Forschungszentrum Karlsruhe

Leopoldshafen, 25.11.06

8800 km

Tritium Laboratory KarlsruheTritium Laboratory Karlsruhe

spectrometerspectrometer
  hallhall

main spectrometermain spectrometer
supportsupport

buildingsbuildings

  KATRIN
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(magn. field of 3 - 6 T, active veto shield, post-accel. mode)

A = 63 cm2

Detector Setup

 Si-Pin diode
 Detection of transmitted β-decay electrons (mHz to kHz)
 Low background for endpoint investigation
 High energy resolution ΔE  1 keV
 12 rings with 30° segmentation + 4 fold center = 148 pixels

record azimuthal and radial profile of flux tube
minimize background
investigate systematic effects
compensate field inhomogeneity in analyzing plane

PINCH MAGNET

DETECTOR MAGNET

DETECTOR

SUPPORT STRUCTURE

VACUUM, CALIBRATION SYSTEM

ELECTRONICS

el
ec
tr
on
s  

 
 
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Detector magnets, post-acceleration 
electrode, passive shield
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Detector and cabling
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Background

To reach KATRIN's design sensitivity, 
the background has to be as low as 0.01 s-1

detector: passive & active shield, 
post-acceleration

pre spectrometer: wire electrode system
avoiding small Penning traps

main spectrometer: 2-layer wire electrode system
vacuum 10-11 mbar
avoiding small Penning traps
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Electromagnetic design tests
at the pre spectrometer

ground electrodes

pre spec detector

2-dim scanning e-gun

pre spectrometer

new electrodes to avoid Penning trapsnew electrodes to avoid Penning traps
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Energy [keV]

ev
en

ts
 /

 b
in

time [s]

ev
en

ts
 /

 s
ec

o
nd• strong dependence on B (threshold)

• delayed ignition

• background strongly correlated with p

• strong dependence on voltage

 background caused by trapped particles

Background at high B-fields (B
max

 > 2T) (up to sommer 2009)

Pre spectrometer
background studies I
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z (m)

r 
(m

)

0 V

new ground electrode:
surface adopted to the 
magnetic field lines

new shape
at ring

Pre spectrometer
background studies II

Problem: very small, but deep Penning traps near geometrical corners

Solution: - very precise and very detailed 
electromagnetic calculations
(special codes developed by KATRIN)

   - avoid Penning trap by optimally 
shaped electrodes

Result:    Background reduction by 104:

   - with small Penning traps:     bg 1000 s-1

   -  optimally shaped electrodes with 

residual shallow Penning trap        bg        1s-1

   - no residual Penning trap     bg 0.1 s-1
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Secondary electrons from wall/electrode

by cosmic rays, environmental radioactivity, ...

wire electrode on slightly more negative potential

Mainz V (2004)
New record !April 04

KATRIN pre spectrometer

First realisation:
     Mainz III

Background reduction: shielding
by „massless“ wire electrode









e-

U-U    U




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Double-wire layer electrode (690m2) 
production and quality assurance

C-sh
aped ro

d

comb 1. wire layer
Ø = 0.3 mm

2. wire layer 
Ø = 0.2 mm

7
0

 m
m 25 mm

@ Münster University@ Münster University

3-dim coordinate
measurement setup

in Münster clean-room

1,
80

 m
2-dim laser sensorhighres camera

Electrode 

production 

finished

in Oct. 2009



  

Future of Neutrino Mass Measurements, INT Seattle, Feb 2010 24Christian Weinheimer

Electrode module installation 
at the main spectrometer
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A) As smaller m() as smaller the region of interest below endpoint E
0

B) Any unaccounted variance 2 leads to negative shift of m
2:  m

2 = -22

1. inelastic scatterings of ß´s inside WGTS  

   - dedicated e-gun measurements, unfolding of response fct.

2. fluctuations of WGTS column density (required < 0.1%)
    -  rear detector, Laser-Raman spectroscopy, T=30K stabilisation, 
      e-gun measurements

3. transmission function
    -  spatial resolved e-gun measurements
 

4. WGTS charging due to remaining ions (MC: < 20mV)
    - inject low energy meV electrons from rear side, 
     diagnostic tools available

 5. final state distribution
     - reliable quantum chem. calculations

6. HV stability of retarding potential on ~3ppm level required
    - precision HV divider (PTB), monitor spectrometer beamline  

 

Systematic uncertainties

  a few
contributions

with 
m

2
  

0.007 eV2

each
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Measurement of tritium concentration
by laser Raman spectroscopy

     H
2
  /   HD  /   T

2   
/   DT  /   HT

 = 0.820 / 0.083 / 0.003 / 0.005 / 0.085

Beam 
dump

“VADPSS”
Laser

vertical
polarisation

1:1 lens 

Raman
cell

1:1 lens 

“Spec-10”
detector

532 nm 
filter

Fibre bundle 

45 mirror focussing 

lens 
Faraday 

isolator

1-5 W

“HTS”
Spectrograph 

45 mirror

Laser
 5W 532 nm

CCD

Filter

Spectrometer

Fibre

Photo-
diode

LARA-Cell

R.J. Lewis et al.,

Las. Phys. Lett.1-10 (2008)

M.Sturm et al, 

Las. Phys. 20 (2010) 2

(to be published)
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Stability of retarding potential / 
energy calibration: ppm at 18.6 kV

● Measure HV by precision HV divider

● Lock retarding HV by measuring 

energetically well-defined electron line with monitor spectrometer

main spectrometer

tritium source
or alternately

calibration
source

detector

HV-supply

precision 
HV divider
with PTB

83mKr conversion 
electron sources:

- condensed 83mKr: 
Münster/Mainz 

- 83Rb/83mKr:
Rez/Mainz/Münster/Karlsruhe

- 83Rb production: Bonn, Rez

monitor spectrometer 
= modified Mainz spec.: 

E=5eV → 1 eV

T
1/2

=86,2 d

T
1/2 

=1,83 h

pre
spectrometer

Th. Thümmler et al.,

NJP 11 (2009) 103007

D. Venos, arXiv 0902.0291

M. Rasulbaev et al., Appl. Rad. Iso., 

66 (2008) 1838



  

Future of Neutrino Mass Measurements, INT Seattle, Feb 2010 28Christian Weinheimer

Currently: Investigations of 
implanted + evaporated 83Rb/83mKr-source 

preliminary
Rez/Prague, Mainz, Münster, Karlsruhe
evaporated source by Rez/Prague
implanted source by ISOLDE@CERN

 implanted source fulfills 
KATRIN requirements

final test in July/August 2009
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Currently: Investigations of 
implanted + evaporated 83Rb/83mKr-source 

preliminary
Rez/Prague, Mainz, Münster, Karlsruhe
evaporated source by Rez/Prague
implanted source by ISOLDE@CERN

 implanted source fulfills 
KATRIN requirements

final test in July/August 2009

Ideal „relic neutrino test source“
Integral spectrum        primary energy spectrum

inelastically
scattered
electrons

zero energy
loss fraction

minimum
energy

loss
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A new pulsed angular-defined 
UV LED photoelectron source

              pinch magnet:  0o                                                           90o

              electron source:  0o                                                           3.3o

K. Valerius et al., 

NJP 11 (2009) 063018

(without angular­definition)

E
B

fibre
UV LED

Preliminary

Angle at 

Idea: 
fast non-adiabatic acceleration
with adjustable non-parallel 
E and B fields 

e-

 
50

o

 
90

o

 
10

o

 
0

o
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Strong correlation between m
2 and endpoint E

0

m
2   (2)

with E
0 
from fit

Statistical limitations due to 
correlation with endpoint

10 m spectrometer
3 years 

last 20 eV 3  2  1



  

Future of Neutrino Mass Measurements, INT Seattle, Feb 2010 32Christian Weinheimer

Strong correlation between m
2 and endpoint E

0

m
2   (2)

with known E
0

Statistical limitations due to 
correlation with endpoint

10 m spectrometer
3 years 

last 20 eV 3  2  1

 more than a factor 2 of sensitivity on m
2 is lost by unknown E

0
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Importance of external endpoint

Endpoint/Q-value is related to 3He-T mass difference

Precision Penning trap measurements

M(3He,T) = 18589.8 1.2 eV
(Nagy et al., Eur. Phys. Lett. 74 (2006) 404)

Improved precision expected by
1 (2) orders of magnitude using
state-of-the-art (new) techniques

Required precision to really improve m(
e
) sensitivity:

E
0
 = 5 meV     unrealistic for Penning traps

but it is also very difficult to 
calibrate KATRIN to this level

But it would be very helpful to cross-check the 
systematic uncertainties at the 50-100 mV level !

aim to determine 

M(3He,T) with 10-11 

precision

on single masses 

(K. Blaum et al. 

MPIK Heidelberg

with Van 

Dyck/Seattle`s 

setup)
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KATRIN

Mainz

□ m = 0.5 eV
○ m = 0.35 eV
● m = 0 eV

KATRIN´s sensitivity

Example of KATRIN simulation & fit
(last 25eV below endpoint, reference):

sensitivity:
m < 0.2eV (90%CL)

discovery potential:

m  =  0.35eV (5)

m  =  0.3eV   (3)

Expectation for 3 full beam years: syst ~ stat
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KATRIN

Mainz

□ m = 0.5 eV
○ m = 0.35 eV
● m = 0 eV

KATRIN´s statistical uncertainty

Example of KATRIN simulation & fit
(last 25eV below endpoint, reference):

sensitivity:
m < 0.2eV (90%CL)

discovery potential:

m  =  0.35eV (5)

m  =  0.3eV   (3)

Expectation for 3 full beam years: syst ~ stat

KATRIN will improve observable m2( e
) by 2 orders of magnitude

and the sensitivity on m( e
) by 1 order of magnitude

will check the whole cosmological relevant mass range

will detect degenerate neutrinos (if they are degen.)
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Conclusion

KATRIN collaboration 2009

KATRIN is a model-independent direct neutrino mass experiment
complementary to cosmology and 0  searches

KATRIN is based on well-proven technology pushing it to the frontiers

KATRIN`s sensitivity m(
e
) of 0.2 eV will allow to

check the full cosmological relevant neutrino mass range &
to measure m(

e
) if the degenerate mass scenario is true

KATRIN`s timeline:
souce: demonstrator: 2010, full WGTS: 2010-2012
tritium elimination line DPS2-F: 2010, CPS: 2011-2012
main spectrometer 2010-2011
detector 2010
regular data taking 2012-2018 (3 full-beam-years) 
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