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Prospects for 0-ν ββ Search with a�
 High-Pressure Xenon Gas TPC�

What’s  NEXT ?�
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INT Nu Mass February 2010	

 2	





INT Nu Mass February 2010	

 3	



Xenon for 0-ν ββ	



•  Only inert gas with a 0-ν ββ candidate	


•  Q-value of 136Xe is reasonably high: ~2470 keV	


•  No long-lived Xe radio-isotopes	


•  No need to grow crystals - no modular surfaces!	


•  Monolithic, fully active fiducial surface is possible	


•  Can be easily re-purified in place (recirculation)	


•  136Xe enrichment easy (natural abundance 8.9%)	


•  Gas Phase advantages:	



–  Event topology is available (in principle!)	


–  Excellent energy resolution (not demonstrated - yet!)	
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Energy Resolution   CUORE:     δE/E ≈ 1 x10-3 FWHM 

Germanium Majorana/GERDA:  δE/E ≈ 1 x10-3 FWHM 

CUORICINO 
Calibration spectrum�
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Background Rejection 	



•  Ultra-high energy resolution is first line of defense	


⇒ Extreme radio-purity of materials 	



–  insufficient to remove all backgrounds (so far)	


–  Try other tactics:	



•  Event topology - single-site requirement	


•  Event topology - two opposed electrons in B-field	


•  Event topology - two “Bragg” peaks on one track	


•  Tag daughter atom - somehow…	


•  Use 48Ca - ultra-high Q-value 	


•  … ?	
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Energy resolution in LXe	


Anomalously large fluctuations exist in LXe �

in partitioning of energy between charge and light �
Scintillation ⇔ Ionization “anti-correlation” �

High atomic plus high ionization densities ⇒ recombination �
⇒ Landau fluctuations govern partitioning in LXe �

In LXe, it is necessary to detect/combine both signals, but: �

Only a limited fraction of scintillation signal is recoverable�
Energy resolution cannot be fully restored in LXe�
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Energy resolution: EXO-200	


ionization and scintillation are strongly “anti-correlated” in LXe 

  δE/E = 33 x 10-3 @ Q0νββ  FWHM - predicted 	
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Gamma events (e-R) 

Neutron events (N-R) 

Latest Xenon-10 
results look better, 
but nuclear recoil 
acceptance still 
needs restriction 

Lo
g 1

0 S
2/

S
1 

Xenon10 Experiment	



WIMP search: fluctuations - very bad news for S2/S1 resolution!	
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Xenon: Strong dependence on density 
observed for energy resolution	



For ρ <0.55 g/cm3, ionization energy resolution is “intrinsic” 

Ionization 
signal only Here, the 

fluctuations 
are normal  

Bad 
news! 
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Intrinsic energy resolution - xenon �

δE/E = 2.35 ⋅ (F⋅W/Q)1/2 
–  F  ≡  Fano factor: F = 0.15 (HPXe);  F ~20 (LXe)   
–  W ≡ Average energy per ion pair: W ~ 25 eV 
–  Q ≡ Energy release in decay of 136Xe: ~2500 keV 

δE/E = 2.8 x 10-3 FWHM  (HPXe)	


Close to the champions! 

N = Q/W ~100,000 primary electrons�
σN = (F⋅N)1/2 ~120 electrons rms! �
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Intrinsic energy resolution �
δE/E = 2.8 x 10-3 FWHM  (HPXe)	



To preserve this intrinsic resolution, we 
Need gain with very low noise/fluctuations! �

Avalanche gain cannot meet this objective, as �
early fluctuations are exponentially amplified.�

A linear gain mechanism is needed�

Answer: Electroluminescence! �
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Electroluminescence (EL) in xenon 	



1.   Drift primary electrons to a region of high, but not 
too high, electric field. �

2.  Primary electron gains energy from high electric 
field, reaches an energy greater than 8.3 eV �

3.  Electron excites atom, losing ~all energy to atom�
4.  Excimer forms and radiates UV at 7.3 eV �
5.  Electron repeats 2 - 4, until it reaches anode�

Typical energy expenditure/photon: 10 eV �
Example: 10kV ⇒ nuv = 1000 �
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Some Virtues of Electroluminescence	



•  Immune to microphonics �
•  Absence of positive ion space charge �
•  Linearity of gain versus pressure, HV �
•  Isotropic signal dispersion in space�
•  Trigger, energy, and tracking functions 

accomplished with optical detectors�
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Detection process	


Energy resolution depends on the precision for 

counting each single primary electron �
Define an EL gain fluctuation factor: G ≡ σ2

EL �
G for EL contains three terms:	



G = 1/(nuv) + (1 + σ2
detector)/ ndetected photons)�

σ2
detector ≈ 0.5 for PMTs�

Let’s impose a requirement that  G = F = 0.15 �
Then: npe ≥ 10 photo-electrons/primary electron �
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Energy resolution	


npe ≥ 10 photo-electrons/primary electron implies:�
#Equivalent noise: much less than 1 electron rms!	



Npe = 1,000,000 photoelectrons at Q-value - not a problem! �
Finally,… �

Fluctuations between energy deposition process (F) 
and gain process (G) are uncorrelated: �

σ  = ((F + G)⋅N)1/2 �

δE/E = 4 x 10-3  FWHM 
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 Xenon gas advantage: 	



Below 0.55 g/cm3, the energy resolution is “intrinsic”�

Anomalous fluctuations in energy partitioning �
 do not exist in HPXe�

A measurement of ionization alone is sufficient to 
obtain near-intrinsic energy resolution…�
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EL in 4.5 bar of Xenon (Russia - 1997) 

This resolution corresponds to 

 δE/E = 5 x 10-3 FWHM 

-- if extrapolated (E-1/2) to 
Qββ of 2.5 MeV 
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HPXe EL ββ decay TPC: R&D	


•  Primary Goal #1: Energy resolution 	



– Must be demonstrated at 2000+ keV energy�

•  Primary Goal #2: Background rejection	


–  Eliminate threat of 208Tl at 2615 keV, other γ’s�

•  Primary Goal #3: 3 -D tracking in xenon	


–  Topology: measure Bragg peak-finding efficiency�
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Topology: “spaghetti, with 2 meatballs” 	



ββ events: 2 

γ events:   1 

Gotthard TPC: 

~ x30 rejection 
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7-PMT, 20 bar���
TAMU HPXe TPC	



1 inch 

R7378A 
J. White, TPC08, (D. Nygren, H-G Wang) 
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Nr Discrimination in HPXe with TAMU 7-PMT TPC	



neutrons	



gammas	
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19-PMT TPC at LBNL 
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Goals for 19-PMT HPXe TPC	



•  Determine conditions for optimum δE/E	


– Density up to 20 bars, optical systematics,…	



•  Explore energies up to/beyond 662 keV	


– Tracks must be contained within volume	



•  Explore wide range of drift field	


– Does “intrinsic” resolution depend on E ?	



•  Get experience, prepare for larger system!	
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Neutrino Experiment 
with a Xenon TPC 

NEXT collaboration: 
Spain/Portugal/France/ 

Russia/US… 

funded: 5M € ! 
to develop & construct a 
100 kg HPXe TPC for   
0-ν ββ decay search at 
Canfranc Laboratory 
within five years 
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 NEXT: “Separated function” EL TPC �
 Asymmetric basic concept �

Transparent -HV plane 

Readout plane B Readout plane A 

. 

ions 

record energy 
and primary 
scintillation 
signals here, 
with PMTs 

Field cage: reflective teflon (+WLS?)  

EL signal 
created here 

Tracking  
performed 
 here, with 

“SiPM” array 
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Separated-function symmetric TPC: 	



-HV plane Readout plane B (A) 
Energy function 

Readout plane A (B) 
Tracking function 

. 

ions electrons 

Fiducial 
volume 
surface 

           Signal: ββ event  Backgrounds 

*
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Background threats for 136Xe	



“It will not be possible to eliminate all U-Th 
series contamination in the structures”	



A major threat: 208Tl γ-rays (2615 keV) 	


Process: gamma ray enters detector, radiates ~145 

keV gamma that escapes, and deposits energy ≈ 
Q-value; looks like real ββ event.	



Solution: active γ-catcher surrounding active 
volume, in contact with the gas, and… naked ! 	
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HV Cathode	



Scintillator bar	



Symmetric TPC with “99.99%” γ-catcher	



Hexagonal 
scintillator 
plates + PMT	



Field cages and HV insulator: outside bars	



EL Plane	
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2. Symmetric TPC with scintillator bars 
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Which scintillator?	



•  High-Z for stopping power ⇒ inorganic	


•  “Radio-pure”	


•  Reasonably fast (<30 ns)	


•  Good mechanical properties, non-hygroscopic 	


•  Good transparency	


•  Effective wavelength shifter (why this?)	



 BaF2 may satisfy these desiderata	
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Barium Fluoride Properties	


•  Emission: 	



–  195, 220 nm <1 ns   (2 photons/keV)	


–  300 nm ~630 ns	

(10 photons/keV)	


–  Strong excitation of fast component by 175 nm UV	



•  Density: 4.88 g/cm3	


•  X0 = 2 cm; attenuation length for 150 keV: 2 mm	


•  BaF2 absorption: ~140 nm - good transparency 	


•  Not hygroscopic; pitted by standing liquid water	


•  Allegedly “radio-pure” - what does this mean?	





INT Nu Mass February 2010	

 33	



Scenario: gamma tag	



   Full coverage of scintillator absorbs some of 
the 2.615 (or higher) Mev gammas, but of 
150 keV (or lower/higher) gammas trying to 
escape, essentially 100% are detected. 	



Signature:	


One scintillator element detects a much larger 

prompt signal than its neighbors	





INT Nu Mass February 2010	

 34	



Scenario: event energy	

	



•  The scintillators are naked, exposed to the 
175 nm UV of xenon (both primary and 
secondary scintillation )	


– BaF2 shows strong excitation at ~175 nm	


– Re-radiates mainly at 220 nm, (fast?)	


– WLS photons easily detected by quartz PMT	



•  Full scintillator coverage: integrating sphere	


•  Measure event energy with “gamma tagger”	
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Gamma-catcher summary	



•  Most multi-MeV gammas are tagged on the 
way into active volume; all low-energy 
daughters are absorbed on their way out.	



•  Scintillators serve dual roles: γ-background 
rejection, and measurement of event energy	



•  Can such a scheme achieve background 
-free performance in energy ROI?   	
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Conclusions	


•  NEXT enters the crowded arena of 0-v ββ 

experiments, with ~100 kg enriched 136Xe high-
pressure gas electroluminescent TPC	



•  R&D goals include:	


–   δE/E < 1% FWHM @ 2500 keV	


–  Topological discrimination signal/background	


–  Innovative combination of EL, WLS, γ-catcher	



•  Reach: touching the inverted hierarchy…	


•  Future: 1-ton ?  NEXO?	
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Other HPXe efforts	



Gotthard TPC  Pioneering 0-ν ββ experiment	



Beppo-SAX satellite 7-PMT 5-bar TPC 
****	



BNL-Temple HPXe scintillation decay time 

EXO - gas Ba++ ion tagging, tracking, … 

Texas A&M 7-PMT 20 bar HPXe TPC 

NEXT!   
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“Gotthard TPC” ���
Pioneer TPC detector for 0-ν ββ decay search	



–  Pressurized TPC, to 5 bars	


–  Enriched 136Xe (3.3 kg) + 4% CH4	


–  MWPC readout plane, wires ganged for energy	


–  No scintillation detection ⇒ no TPC start signal!	



•  No measurement of drift distance	


–  δE/E ~ 80 x 10-3 FWHM (1592 keV)	



⇒  66 x 10-3 FWHM (2480 keV)	


Reasons for this less-than-optimum resolution are not clear…	



Possible: uncorrectable losses to electronegative impurities 	


Possible: undetectable losses to quenching (4% CH4)	



But: ~30x topological rejection of γ interactions!	
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Backgrounds for the ββ0ν search	



NEXT Collaboration 
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Silicon Photomultiplier “SiPM”	



SiPM from Hamamatsu, “MPPC” 
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SiPM photoelectron spectrum	
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High-pressure xenon EL TPC	


•  Ideal fiducial volume	



–  Closed, seamless, fully active, variable,...	


•  No dead or partially active surfaces	



–  100.000% charged particle rejection (from surfaces)	


•  Needs demonstration…  	



–  Use t0 (primary scintillation) to place event in z	


•  Ample signal over most of 2ν spectrum	



–  Topological rejection of single-electron events	


•  Factor of at least 30 expected (Gotthard TPC)	
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A scary result: adding a tiny 
amount of simple molecules  
(CH4, N2, H2 ) to HPXe 
quenches both ionization 
and scintillation for α’s 

α particle: dE/dx is very high 
Gotthard TPC: 4% CH4 
Loss(α): factor of 6 

For β particles, what was 
effect on energy resolution?  

Surely small but not known, 
and needs investigation 

(~25 bars) 

α particles 
K. N. Pushkin et al, 2004 

IEEE Nuclear Science 
Symposium  proceedings 
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Molecular Chemistry of Xenon 	


•  Scintillation:	



•  Excimer formation: 	

     Xe*+ Xe → Xe2* → hν + Xe	


•  Recombination: Xe+ + e– → Xe* → 	



•  Density-dependent processes also exist:	


 Xe*+ Xe* → Xe** → Xe++ e- + heat	



•  Two excimers are consumed!	


•  More likely for both high ρ + high ionization density	



–  Quenching of both ionization and scintillation can occur!	


Xe* + M → Xe + M* → Xe + M + heat (similarly for Xe2*, Xe**, Xe2*+… ) 	


Xe+ + e–(hot) + M → Xe+ + e–(cold) + M* → 	


Xe+ + e–(cold) + M + heat → e–(cold) + Xe+ → Xe*  	
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A simulated event, with SiPM	



Reconstruction of event 
topology, using SiPM  to 
sense EL, at 1 cm pitch 

Blob recognition is good 

Slide: NEXT collaboration 
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Europe: Beppo-SAX satellite: a HPXe TPC in space! 
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241Am γ-rays ���
~60 keV	



60 keV 
30 keV 

(1st Look – PMT gains not yet calibrated) 


