

## EXO status and prospects

# Jesse Wodin for the EXO collaboration SLAC

INT Workshop, Seattle



- 200kg  $^{136}$ Xe (80% enrichment) liquid phase (170 K), both source and detector of  $\partial\nu\beta\beta$
- $Q_{\beta\beta}^{Xe-136}$  = 2.458 MeV  $\beta\beta$  endpoint energy
- TPC signals ~ 5x10<sup>4</sup> e<sup>-</sup>/MeV, ~ 10<sup>4</sup>  $\gamma$ /MeV  $\rightarrow \Delta E/E = 1.4\%$  at  $Q_{\beta\beta}^{(1)}$

• Event topology from charge distribution and  $t_{SCINT}$ - $t_{ION}$  (useful for background rejection and possibly Ba tagging on full EXO)

(1) E. Conti et al., Phys. Rev. B 68, 054201 (2003)



## EXO-200 details

- Measure both ionization electrons and scintillation photons for best energy resolution
  - Ion. & scint. anti-correlated -> improved energy resolution (~ 1.4% at  $Q_{\beta\beta}$ )
  - Event topology important for background rejection
- Detector geometry cylindrical ~ 40cm ID x 40 cm length
  - TPC ~ 1.4 mm thick walls, minimized for background reduction
  - Cylinder split by -70 kV cathode plane at center, creating two symmetrical drift regions (3.5 kV/cm drift field)
- Ionization read out by photoetched wires
  - No crimps at feed-throughs (common failure point) in fact, no feedthroughs!
  - 100 μm width, 3 mm pitch, ganged in groups of 3 (48 ch x, 48 ch y, total 96 ch per 1/2 detector)
- Scintillation photons read out by Large Area APDs
  - 516  $\phi$ 16 mm (active area) APDs
  - TPC lined with teflon (175 nm scintillation photon reflector)
  - 15% 20% light detection efficiency (spread mostly due to event position along long axis of TPC)

#### • Low background construction, shielding

- All components screened for low-activity via ICPMS, NAA, gamma counting, GD-MS
- 50 cm cold LIQUID SHIELDING around TPC provides FULL coverage around TPC
- 10 cm Pb shielding, screened for low <sup>210</sup>Pb content







## EXO-200 material screening

- Stringent requirements on K/Th/U concentrations on materials inside cryostat
- Large-scale materials testing, published in Nucl. Instr. and Meth. A 591 (2008) 490– 509
- In particular:

| Component                                                 | K 10 <sup>-9</sup> g/g | Th 10 <sup>-12</sup> g/g | U 10 <sup>-12</sup> g/g | <sup>210</sup> Po Bq/kg |
|-----------------------------------------------------------|------------------------|--------------------------|-------------------------|-------------------------|
| 3M Novec<br>HFE-7000, 1-<br>methoxyheptafluor<br>opropane | <1.08                  | <7.3                     | <6.2                    |                         |
| Lead shielding                                            | <7                     | <1                       | <1                      | 17-20                   |
| Copper                                                    | <55                    | <2.4                     | <2.9                    |                         |
| Acrylic                                                   | <2.3                   | <14                      | <24                     |                         |
| TPC grid wires                                            | <90                    | 47 +/- 2                 | 320 +/- 2               |                         |



Design goals:

1. 20 SLPM circulation rate for continuous purification (uses heater, pump, condenser) while TPC full

GXe pump

- 2. Continuous purification with commercial (SAES) getters
- 3. Continuous purity monitoring of circulating gas (GPMs see A. Odian's talk on Wed.)
- 4. Differential pressure across TPC walls  $|dP| = |P_{Xe}P_{HFE}| < 15$  torr at all times, due to thin-walled (~ 1.5mm) TPC construction (driven by radiopurity requirements)
- 5. Xe recovery to bottle farm with compressors
- 6. Triply redundant cryocooling system (3x Polycold refrigerators)

LXe heater

Cryostat



### EXO-200 detector construction



Signal cabling penetrates TPC and cryostat (no "feedthroughs")

Feb. 8-11, 2010



Feb. 8-11, 2010



## Looking into EXO-200 detector without APDs



Feb. 8-11, 2010

INT Workshop, Seattle



## EXO-200 LAAPD specs

- Mass ~ 0.5 g/LAAPD
- Low radioactivity construction (used bare, no window, no ceramic, EXO-supplied chemicals & metals)<sup>a</sup>
- QE > 1 at 175 nm (NIST)
- Gain set at 100-150
- V ~ 1500V
- $\Delta V < \pm 0.5 V$
- $\Delta T < \pm 1 K$  APD is the driver for temperature stability
- Leakage current cold <  $1\mu A$
- Capacitance ~ 200 pF at 1400 V
- $\bullet\,\varphi16~mm$  active area per LAAPD
- <sup>a</sup> D. S. Leonard, et al., Nucl. Instr. and Meth. A 591 (2008) 490-509





## EXO-200 APD installation



![](_page_12_Picture_0.jpeg)

## EXO-200 TPC after cable and APD installation, before final endcap welding

![](_page_12_Picture_2.jpeg)

![](_page_13_Picture_0.jpeg)

## EXO-200 TPC ready for packaging at Stanford

![](_page_13_Picture_2.jpeg)

![](_page_14_Picture_0.jpeg)

## EXO-200 installation site: WIPP

![](_page_14_Figure_2.jpeg)

- EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
- 1600 mwe flat overburden (2150 feet, 650 m)
- Salt mine for low-level radioactive waste storage
- Salt "rock" low activity relative to hard-rock mine

$$\Phi_{\mu} \sim 1.5 \times 10^5 yr^{-1}m^{-2}sr^{-1}$$
  
 $U \sim 0.048 ppm$   
 $Th \sim 0.25 ppm$   
 $K \sim 480 ppm$ 

Esch et al., arxiv:astro-ph/0408486 (2004)

Feb. 8-11, 2010

![](_page_15_Picture_0.jpeg)

## EXO-200 facility at WIPP

![](_page_15_Picture_2.jpeg)

• Systems (xenon, refrigeration, liquid shielding, purification, purity monitoring, slow control, etc.) commissioning completed 9/2009 - 12/2009

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_16_Picture_0.jpeg)

### Active muon veto

![](_page_16_Picture_2.jpeg)

- •Active muon veto system installed 2009
- •Testing and integration into DAQ underway

![](_page_16_Picture_5.jpeg)

Feb. 8-11, 2010

![](_page_17_Picture_0.jpeg)

## TPC arrival & installation at WIPP

![](_page_17_Picture_2.jpeg)

- TPC shipped from Stanford to WIPP 11/2009 in shielded container
- TPC installed in cryostat 12/2009
- LXe line re-hookup, followed by DAQ testing at WIPP
- Natural Xe run scheduled to begin mid-2010

![](_page_18_Picture_0.jpeg)

## Full EXO R&D

• Full EXO ~ ton scale gas or liquid TPC

• "Tagging" of  $\partial \nu \beta \beta$  daughter nucleus <sup>136</sup>Ba ion for background rejection – R&D underway

- Ion extraction from a TPC
- Ion trapping
- Ion identification with
  - Laser Induced Fluorescence (LIF)
  - Resonant ionization spectroscopy (RIS)
- Single ion RIS
- Others...
- GXe TPC R&D underway
  - 10 bar GXe TPC under construction
  - Test tracking, ionization+scintillation readout,  $\Delta E/E$ , Ba tagging interface, etc.

![](_page_18_Figure_14.jpeg)

"Tagging"  $^{136}$ Ba ion in real time may allow for rejection of all backgrounds except  $2\nu\beta\beta$ .

![](_page_19_Picture_0.jpeg)

## Single Ba<sup>+</sup> identification with Laser Induced Fluorescence

Goal: extract and ID single <sup>136</sup>Ba ions in real time from liquid or gas TPC for background rejection

- ${}^{136}Xe \rightarrow {}^{136}Ba^{++} + 2e^{-}$
- $^{136}Ba^{++} \rightarrow ^{136}Ba^{+}$  in LXe
- Isolate single ion in an ion trap
- Identification and dynamics of single Ba<sup>+</sup>
   in ion traps well studied <sup>(1)</sup>
- 493 nm, 650 nm lasers cycle trapped ion electronic states
- LIF ~10<sup>7</sup> photons/sec/ion into  $4\pi$

(1) H. Dehmelt et al. Phys. Rev. A 22, 1137 - 1140 (1980)

![](_page_19_Figure_10.jpeg)

![](_page_20_Picture_0.jpeg)

## Single Ba<sup>+</sup> in a gas-filled quadrupole ion trap

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

- Observed LIF of a single  $Ba^+$  in a buffer gas filled ion trap (~  $10^{-3}$  torr He, some Xe)
- ~ 9 $\sigma$  observation at 25s storage time

M.Green et al., Phys Rev A 76 (2007) 023404 B.Flatt et al., NIM A 578 (2007) 409

INT Workshop, Seattle

![](_page_21_Picture_0.jpeg)

## Resonant Ionization Spectroscopy (RIS)

- RIS uses lasers tuned to atomic resonances to first *excite* and then *ionize* neutral Ba.
- Pulsed dye lasers at 553.5 nm and 389.7 nm ۲
- lons counted in a channeltron •
- Plan: couple RIS system to quadrupole ion • trap

![](_page_21_Figure_6.jpeg)

![](_page_21_Figure_7.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Picture_0.jpeg)

## Full EXO GXe TPC R&D in progress

Goal: Test tracking,  $\Delta E/E$ , electronics, ionization + scintillation readout, Ba tagging interface in 1-10 bar GXe

![](_page_23_Picture_3.jpeg)

- Field cage length: 780 mm Field cage diameter: 535 mm
  - Feb. 8-11, 2010

- 10 bar GXe cylindrical TPC
- 1 MeV e<sup>-</sup> source
- Segmented readout (tracking) on both ends
- Electroluminescent gap + CsI photocathode for both charge and scintillation readout
- Replaceable endcaps for alternate charge/light readout technologies, Ba tagging interface

![](_page_23_Figure_11.jpeg)

INT Workshop, Seattle

![](_page_24_Picture_0.jpeg)

## Coupling a quadrupole trap to a TPC

![](_page_24_Figure_2.jpeg)

Feb. 8-11, 2010

phys.

![](_page_25_Picture_0.jpeg)

## EXO-200 Majorana mass <m\_{\beta\beta}> sensitivity

Assumptions

- 1. 200 kg of <sup>136</sup>Xe, 80% enrichment
- 2. Low but finite radioactive background: 20 events/yr in  $\pm 2\sigma$  interval around Q=2.481 MeV
- 3. Negligible background from  $2\nu\beta\beta$  ( $T_{1/2} > 1 \times 10^{22}$  yr, Bernabei et al.)

| Case    | Mass [ton] | Efficiency<br>[%] | Run time<br>[yr] | σ <sub>ε</sub> /Ε @ 2.5<br>MeV [%] | Radioactiv<br>e<br>backgroun | T <sub>1/2</sub> <sup>0νββ</sup> [yr,<br>90% CL] | Neutrino majorana mass<br>[eV] |          |
|---------|------------|-------------------|------------------|------------------------------------|------------------------------|--------------------------------------------------|--------------------------------|----------|
|         |            |                   |                  |                                    | d [events]                   |                                                  | QRPA                           | NSM      |
| EXO-200 | 0.2        | 70                | 2                | 1.6                                | 40                           | 6.4x10 <sup>25</sup>                             | 0.13 (1)                       | 0.19 (2) |

If Klapdor's observations are correct, EXO-200, 2-yr runtime:

- 1. 46 events on top of 40 (QRPA)  $\rightarrow$  5 $\sigma$  measurement
- 2. 170 events on top of 40 (NSM)  $\rightarrow$  11.7 $\sigma$  measurement

(1) Rodin et al., Nucl. Phys. A 793 (2007) 213-215

(2) Caurier et al., arXiv:0709.2137v1

![](_page_26_Picture_0.jpeg)

## EXO Majorana mass <m\_{\beta\beta}> sensitivity

Assumptions

- 1. <sup>136</sup>Xe, 80% enrichment
- 2. Intrinsic low backgrounds & Ba tagging eliminate all radioactive backgrounds
- 3. Energy resolution used to separate  $0\nu\beta\beta$  from  $2\nu\beta\beta$  modes (select  $0\nu$  events in +/-  $2\sigma$  interval around 2.458 MeV endpoint)
- 4.  $2\nu\beta\beta$  ( $T_{1/2}$  > 1x10<sup>22</sup> yr, Bernabei et al.)

| Case         | Mass<br>[ton] | Efficiency<br>[%] | Run time<br>[yr] | σ <sub>ε</sub> /E @ 2.5<br>MeV [%] | 2vββ background<br>[events] | Τ <sub>1/2</sub> <sup>0νββ</sup> [yr, 90% CL] | Neutrino majorana mass<br>[meV] |         |
|--------------|---------------|-------------------|------------------|------------------------------------|-----------------------------|-----------------------------------------------|---------------------------------|---------|
|              |               |                   |                  |                                    |                             |                                               | QRPA                            | NSM     |
| Conservative | 1             | 70                | 5                | 1.6 <sup>(3)</sup>                 | 0.5 (~1)                    | 2.0x10 <sup>27</sup>                          | 24 (1)                          | 33 (2)  |
| Aggressive   | 10            | 70                | 10               | 1.0 <sup>(4)</sup>                 | 0.7 (~1)                    | 4.1x10 <sup>28</sup>                          | 5.3 <sup>(1)</sup>              | 7.3 (2) |

(1) Rodin et al., Nucl. Phys. A 793 (2007) 213-215

(2) Caurier et al., arXiv:0709.2137v1

(3)  $\sigma_{\rm E}/{\rm E}$  = 1.6% obtained in EXO R&D, Conti et al., Phys. Rev. B 68 (2003) 054201

(4)  $\sigma_{\rm E}/{\rm E}$  = 1.0% considered aggressive but realistic guess with large light collection

![](_page_27_Picture_0.jpeg)

## **EXO** collaboraion

K.Barry, E.Niner, A.Piepke Physics Dept., U. of Alabama, Tuscaloosa AL, USA P.Vogel Physics Dept., Caltech, Pasadena CA, USA A.Bellerive, M.Bowcock, M.Dixit, K.Graham, C. Green, C. Hagemann, C.Hargrove, E.Rollin, D.Sinclair, V.Strickland Carleton University, Ottawa, Canada C.Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, B.Mong Colorado State U., Fort Collins CO, USA M.Moe Physics Dept., UC Irvine, Irvine CA, USA D.Akimov, I.Alexandrov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Karelin, A.Kovalenko, A.Kuchenkov, V.Stekhanov, O.Zeldovich ITEP Moscow, Russia

B.Aharmin, K.Donato, J.Farine, D.Hallman, U.Wichoski Laurentian U., Canada

H.Breuer, C.Hall, L.Kaufman, D.Leonard, S.Slutsky, Y-R.Yen U. of Maryland, College Park MD, USA J. Cook, K.Kumar, P. Morgan, A.Pocar, K. Schmoll, C. Sterpka U. of Massachusetts, Amherst, Amherst MA, USA M.Auger, G.Giroux, R.Gornea, F.Juget, G.Lutter, J-L.Vuilleumier, J-M. Vuilleumier Laboratory for High Energy Physics, Bern, Switzerland N.Ackerman, M.Breidenbach, R.Conley, W.Craddock, S.Herrin, J.Hodgson, D.Mackay, A.Odian, C.Prescott, P.Rowson, K.Skarpaas, J.Wodin, L.Yang, S.Zalog SLAC, Menlo Park CA, USA P. Barbeau, L.Bartoszek, R.DeVoe, M.Dolinski, B.Flatt, G.Gratta, M.Green, F.LePort, M.Montero-Diez, R.Neilson, A.Reimer-Muller, A.Rivas, K.O'Sullivan, K.Twelker Physics Dept., Stanford University, Stanford CA USA P. Fierlinger Techn. Univ. Munich, Germany