v mass from double beta decay

- Extracting V mass from $0\nu\beta\beta$
- Experiments & Sensitivity
 ⁷⁶Ge: GERDA and MAJORANA
- What would constitutes a discovery and mass measurement?

Seattle, WA

Monday, February 8, 2010

at CHAPEL HILL

Ονββ decay

Requires:

neutrino to have non-zero mass

• "wrong-handed" helicity admixture ~ m_i/E_{v_i}

Any process that allows $0\nu\beta\beta$ to occur requires Majorana neutrinos with non-zero mass. Schechter and Valle, 1982

- Lepton number violation
 - No experimental evidence that Lepton number must be conserved

(i.e. general SM principles, such as electroweakisospin conservation and renormalizability)

If $0\nu\beta\beta$ decay is observed \Rightarrow neutrinos are Majorana particles lepton number is violated

$0\nu\beta\beta$ and ν mass

Observable (decay rate) depends on nuclear processes & nature of lepton number violating interactions (η).

- Phase space, $G_{0\nu}$ is calculable.
- Nuclear matrix elements (NME) via theory (Shell Model, Quasirandom phase approximation, interacting boson model).
- Effective neutrino mass, $< m_{\beta\beta} >$, depends directly on the assumed form of lepton number violating (LNV) interactions.

$0\nu\beta\beta$ Decay Sensitivity to $<\!\!m_{\beta\beta}\!\!>$

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right| = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

v mass from double beta decay Monday, February 8, 2010 INT Workshop Feb. 2010

- Requires calculation of reliable theoretical nuclear matrix elements.
- Requires an understanding of the lepton number violating (LNV) interaction mechanism – currently assume a model.

- Requires calculation of reliable theoretical nuclear matrix elements.
- Requires an understanding of the lepton number violating (LNV) interaction mechanism – currently assume a model.

- Requires calculation of reliable theoretical nuclear matrix elements.
- Requires an understanding of the lepton number violating (LNV) interaction mechanism – currently assume a model.

- Requires calculation of reliable theoretical nuclear matrix elements.
- Requires an understanding of the lepton number violating (LNV) interaction mechanism – currently assume a model.

- In the "simplest" model light Majorana neutrino and SM interactions <m_{ββ}> depends on mass hierarchy, lepton matrix mixing values, & Majorana phases.
 - for normal hierarchy, can have a cancelation resulting in no observable decay.

Key advantage: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd Potential future advantage: additional excited state decays (NME)

$0\nu\beta\beta$ -decay as a Probe of LNV Interactions

If $0\nu\beta\beta$ is observed, then measurements on 3-4 multiple isotopes might be able to distinguish potential physics mechanisms

Comparison assumes a single dominant mechanism.

Requires results from 3-4 isotopes & calculation of NME to ~20%

lso see Deppisc & Päs arXi:hep-ph/0612165

Experiments & sensitivity to $0\nu\beta\beta$ -decay

Most sensitive experiments to date (using ⁷⁶Ge and ¹³⁰Te) have attained $T_{1/2} > 10^{24} \cdot 10^{25}$ years.

Best case,	or Source Mass • time
0 background !	\sim Source Wass • time _{exp}

Typical masses ~ 1-10 kg Typical exposure times of 5-8 years

Question 1: What would convince one that 0vββ has been discovered?

Question 2: What's needed to reach sensitivities of $T_{1/2}$ on the order of 10^{26} - 10^{27} y?

Current Sensitivity to $< m_{\beta\beta} >$

Assuming LNV mechanism is light Majorana neutrino exchange

 $0\nu\beta\beta$ limits for: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Experimental Considerations

Searching for an **extremely** rare process

 $0\nu\beta\beta T_{1/2} \sim 10^{26}$ - 10^{27} years

 $2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21}$ years

Ideal (only 2νββ backgrounds)

Need large, highly efficient source mass

Want best possible energy resolution and/or kinematical method to discriminate $0\nu\beta\beta$ from $2\nu\beta\beta$

Desire extremely low (near-zero) backgrounds in the $0\nu\beta\beta$ peak region

Sensitivity and backgrounds

Ict/tonne-year in context - Ge example

For illustrative purposes $0\nu\beta\beta$ half-life chosen to be 10x current limit

Best to date - 100 cnts/tonne-year in ROI

Only $2\nu\beta\beta$

Note ⁷⁶Ge has best resolution : 0.16%

2vββ (negligble) Cosmogenic activity Natural radioactivity neutron induced activity

> Klapdor-Kleingrothaus et al., Eur. Phys. J 12, 147 (2001)

Best to date - 100 cnts/tonne-year in ROI

Klapdor-Kleingrothaus et al., Eur. Phys. J 12, 147 (2001)

The KKDC Result

Klapdor-Kleingrothaus, Krivosheina, Dietz and Chkvorets, *Phys. Lett.* B **586** 198 (2004).

 $T_{1/2} = (1.19 + 2.99/-0.5) \times 10^{25} \text{ y}$ $0.24 < m_v < 0.58 \text{ eV} (3\sigma)$

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.

 $T_{1/2} = (1.25 + 6.05/-0.57) \ x \ 10^{25} \ y$

Backgrounds from ²⁰⁸TI

simulations and measurements show that some ²⁰⁸Tl gammas from outside materials will interact in the detector, and then scatter back out, leaving a continuum of "point like" interactions

simulated response of Ge detector exposed to 2615-keV ys

80-mm diameter, 30-mm tall detector simulated with MaGe

Simulations by A. Schubert

The KKDC Result

Klapdor-Kleingrothaus, Krivosheina, Dietz and Chkvorets, *Phys. Lett.* B **586** 198 (2004).

 $T_{1/2} = (1.19 + 2.99/-0.5) \times 10^{25} \text{ y}$ $0.24 < m_v < 0.58 \text{ eV} (3\sigma)$

Plotted a subset of the data for four of five crystals, 51.4 kg-years of data.

 $T_{1/2} = (1.25 + 6.05/-0.57) \ x \ 10^{25} \ y$

Backgrounds & Sensitivity to 0vββ

Next generation experiments are striving for backgrounds in the $0\nu\beta\beta$ region of **counts/tonne-year**.

Requires materials with sub µBq/kg level radioimpurities. Very difficult to achieve this sensitivity with direct radioassays

Shielding from cosmogenic activation.

"New background regimes" -- background sources that could previously be ignored

e.g.: very weak (n,n',gamma) lines

Each experiment's susceptibility to backgrounds depends on a number of factors:

Detection technique (Solid state, TPC, bolometer, ...)

Detector resolution

Detector response function to backgrounds (γ , α , β , neutron, ...)

Construction materials and surrounding materials

Signal to background discrimination capabilities

$0\nu\beta\beta$ decay Experiments - Efforts Underway

Collaboration	Isotope	Technique	Mass	Mass Status		
CAMEO	Cd 116	CdWO emistele	1 4			
CAMEO	Ca-110	$CdWO_4$ crystals 1 t				
CANDLES	Ca-48	60 CaF_2 crystals in liq.	6 kg	Construction		
scint						
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	100 kg			
COBRA	Cd-116,	CdZnTe detectors	10 kg R&D			
	Te-130					
CUROICINO	Te-130	TeO ₂ Bolometer	11 kg	Operating		
CUORE			206 kg	Construction		
DCBA	Nd-150	Nd foils & tracking	20 kg	g R&D		
		chambers				
EXO200	Xe-136	Xe TPC	200 kg	Construction		
EXO		Xe TPC with ion ID		Future		
GEM	Ge-76	Ge diodes in LN	1 t			
GERDA	Ge-76	Seg. and UnSeg. Ge in	35-40 kg	Construction		
		LAr	1 t	Future		
GSO	Gd-160	Gd_2SiO_5 :Ce crystal scint.	2t	•		
		in liquid scint				
Majorana	Ge-76	Point Contact Ge	60 kg	Construction		
			1 t	Future		
NEMO3	Mo-100	Foils with tracking	6.9 kg	Operating		
	Se-82	-	0.9 kg			
SuperNEMO		100 kg R		R&D		
NEXT	Xe-136	High Pressure TPC	1t	R&D		
MOON	Mo-100	Mo sheets	200 kg	kg R&D		
			1 t			
SNO+	Nd-150	0.1% suspended in Scint.	56 kg	Construction		
Xe	Xe-136	Xe in liq. Scint.	1.56 t			

MAJORANA

CANDLES

v mass from double beta decay Monday, February 8, 2010 Operating

Construction

INT Workshop Feb. 2010

⁷⁶Ge - GERDA and MAJORANA

- 86% enriched High purity ⁷⁶Ge crystals
- 0.16 % resolution
- best $0\nu\beta\beta$ -decay sensitivity to date

- enrGe modules in electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto
- DEMONSTRATOR: 30 kg ^{enr}Ge/30 kg ^{nat}Ge

GERDA

9,4m

- enrGe array submersed in LAr
- Water Cherenkov μ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg xtals

⁷⁶Ge - GERDA and MAJORANA

Joint Cooperative Agreement:

Open exchange of knowledge & technologies (e.g. MaGe, R&D) Intention to merge for larger scale 1-tonne exp. (Talk by I. Abt, Session 7) Select best techniques developed and tested in GERDA and MAJORANA

- enrGe modules in electroformed Cu cryostat, Cu / Pb passive shield
- 4π plastic scintillator μ veto
- DEMONSTRATOR: 30 kg ^{enr}Ge/30 kg ^{nat}Ge

CERDA

- ^{enr}Ge array submersed in LAr
- Water Cherenkov μ veto
- Phase I: ~18 kg (H-M/IGEX xtals)
- Phase II: +20 kg xtals

GERDA Status

• Commissioning of Phase 1 is underway

- 18 kg of 86% enriched ⁷⁶Ge (8 p-type semi-coax detectors from H-M & IGEX).
- 15 kg of ^{Nat}Ge (6 p-type semi-coax detectors from Genius Test Facility
- Background goal: 0.01 cnts/(kg keV y) 40 cnts/tonne/y in ROI
- Goal: Check KKDC result.

v mass from double beta decay Monday, February 8, 2010

42

1

INT Workshop Feb. 2010

GERDA LAr Fill

GERDA Status

- Commissioning of Phase 1 is underway
 - 18 kg of 86% enriched ⁷⁶Ge (8 p-type semi-coax detectors from H-M & IGEX).
 - 15 kg of ^{Nat}Ge (6 p-type semi-coax detectors from Genius Test Facility
 - Background goal: 0.01 cnts/(kg keV y)
 40 cnts/ROI/t-y
 - Goal: Check KKDC result.
- Insertion of first detectors scheduled for this spring.
- Development work to fabricate and build Phase II enriched detectors is continuing.

MAJORANA DEMONSTRATOR Status

• Under construction.

- Detector Technology: P-type, point-contact.
- 30-kg of ^{nat}Ge (10 kg (18 detectors) in-hand, additional 10 kg on order)
- 30-kg of 86% enriched 76Ge crystals
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV)
 - ~ 3 count/ROI/t-y (after analysis cuts)

Goals

- backgrounds low enough to justify building a tonne scale Ge experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Test the KKDC claim
- exploit the low-energy sensitivity to perform searches for dark matter, axions.

P-type Point Contact Detectors

Hole vdrift (mm/ns) w/ paths, isochrones

Barbeau et al., JCAP 09 (2007) 009; Luke et al., IEEE trans. Nucl. Sci. 36, 926(1989).

 $\boldsymbol{\nu}$ mass from double beta decay

Monday, February 8, 2010

MAJORANA Point Contact Detectors

Institution	Manufacturer	Dimensions Dia. x length [mm x mm]	Туре	Date
LBNL	Paul Luke	50 x 50 62 x 50 20 x 10 62 x 50	NPC S-PPC Mini-PPCs (3) PPC	1987 2008 2009 2009
Univ. Chicago	Canberra France Canberra USA	50 x 44 60 x 30	PPC (now BEGe)* BEGe	2005 2008
PNNL	Canberra France	50 x 50	PPC	2008
ORNL	PHDs Canberra USA	62 x 46 90 x 30	PPC BEGe (large)	2008 2009
LANL	PHDs Canberra USA ORTEC	72 x 37 70 x 30 65 x 50	PPC BEGe (x18) PPC	2008 2009 2009
UNC	Canberra USA	61 x 30	BEGe*	2009

* ultra low background cryostat

v mass from double beta decay Monday, February 8, 2010 INT Workshop Feb. 2010

Pulse Shape Analysis

Large BEGe detector, loaned to ORNL from Canberra ORNL Pulse-Shape Analysis algorithm

MAJORANA DEMONSTRATOR Status

Under construction.

- Detector Technology: P-type, point-contact.
- 30-kg of ^{nat}Ge (10 kg (18 detectors) in-hand, additional 10 kg on order)
- 30-kg of 86% enriched 76Ge crystals
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV)
 ~ 3 count/ROI/t-y (after analysis cuts)
- Preparing to start UG electroforming.
- Aim to commission first 20 kg module by mid-2011.

Discovery of 0vββ-decay

• Evidence : a combination of

- Correct peak energy
- Single-site energy deposit
- Proper detector distributions (spatial, temporal)
- Rate scales with isotope fraction
- Good signal to background
- Full energy spectrum (backgrounds) understood.
- Further confirmation : more difficult
 - Observe the two-electron nature of the event
 - Measure kinematic dist. (energy sharing, opening angle)
 - Observe the daughter
 - Observe the excited state decay(s)
- Convincing
 - Observe $0\nu\beta\beta$ in several different isotopes, using a variety of experimental techniques

Determination of ν mass from $0\nu\beta\beta$

- Observe $0\nu\beta\beta$ in 3-4 different isotopes, using a variety of experimental techniques.
- Nuclear matrix elements "known" to the 20% level
 - Agreement between different calculation techniques?
 - Consistent with NME related predictions for other observables in the same and nearby nuclei (β-decay, EC, excited states).
- Consistent $0\nu\beta\beta$ results for the assumed LNV interaction and the NMEs.
 - Determination of LNV from independent measurements? (e.g. nEDM, exotic decays, ...)