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Neutrino mass physics
iIs a theme common to both

Compact Objects (supernovae; neutron stars; holes; etc. ."

Cosmology (structure formation; dark matter, etc. . .)

in observational astronomy



We have an exciting situation in
neutrino physics and astrophysics

Experiments are revealing the properties of neutrinos
and this new data is driving interesting developments
in nuclear and particle astrophysics. As | will show,
these astrophysical developments may feed back on
our understanding of neutrino properties.

This is classic particle/nuclear astrophysics,
with a synergistic coupling of astrophysics
and low energy laboratory measurements
of physics beyond the Standard Model

Willy Fowler might appreciate this . . .



Neutrino Mass: what we know and don’t know

om2 ~ 8 x 1077 eV?

We know the mass-squared differences:
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. dm2, ~3x 1073 eV?

We do not know the absolute masses or the mass hierarchy:
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My take on this is as follows:

(1) What we already know about neutrino mass/mixing has potentially
big implications for astrophysics.

(2) Working out those implications may allow new insights into
nucleosynthesis and unmeasured neutrino properties:

e.g., a supernova neutrino signal could help us get at 6,; and

the neutrino mass hierarchy. And, vice versa, what we know about
neutrino flavor mixing may give us insights into how supernovae work.
Cosmology may give absolute masses --- gives best limits now.



Gravitational Collapse of Massive Stars
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The Core Collapse Supernova Phenomenon
is Exquisitely Sensitive to Flavor Changing

Processes and New Neutrino Physics:

‘Gravitational collapse results in high electron and v,
Fermi Energies (representing ~ 10°7 units of e-lepton number);

u/t charged leptons are absent and the corresponding
neutrinos are pair-produced so they carry no net lepton number.

Any process that changes flavor v,__ v, will open phase
space for electron capture as well as reducing e-lepton number.

‘ Later, energy (10% of the core’s rest mass) is in seas of active
neutrinos of all flavors. Entropy and lepton number transported

by neutrinos.

‘ Neutron/proton ratio (crucial for nucleosynthesis) determined
by electron degeneracy or by charged current neutrino capture:

Vet N—=p+e v.+p=n-+e"




Neutrinos Dominate the Energetics of

Core Collapse Supernovae Explosion

only ~1% of
neutrino energy

109% of star’s
rest mass!

mm) Total optical + kinetic energy, 10°! ergs

=) Total energy released in Neutrinos, 10> ergs
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v self coupling — induced O — Ne — Mg Fe (iron)

collective oscillations, spectral swaps
e Core Collapse Core Collapse
at shock breakout, neutronization pulse,

L, ~ 10> ergs™! 8 —12Mg > 12 Mg

neutrino sphere

(= neutron star surface)

— UV

Shock Wave v self coupling — induced
moves through neutrino sphere

collective oscillations, spectral swaps
= neutronization pulse

at late times, ty, > 3s,
ve flux > v.,v,, v, v, v, fluxes L, ~ 10 ergs™!




ordinary MSW evolution of neutrino flavors

MSW resonance at neutrino energy
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Coherent Flavor Evolution for Neutrino
hys = amplitude to be v,
“* | amplitude to be v, ;
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Neutrino Self Coupling - the source of nonlinearity
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now self-consistently couple flavor evolution

on all neutrino trajectories . ..
Anisotropic, nonlinear quantum coupling of
all neutrino flavor evolution histories




A great deal of work has now been done

on this problem by many groups around the world.
There is now a huge literature on this topic.
See review on Collective Neutrino Oscillations:

H. Duan, G. M. Fuller, & Y.-Z. Qian, hep-ph/1001.2799



osine of v trajectory angle wrt. normal to n.s. surface
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E, (MeV)

Spectral Swap

* H. Duan, G. M. Fuller, J. Carlson, Y.-Z. Qian, Phys. Rev. Lett. 97, 241101 (2006) astro-ph/060
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cosine of neutrino emission angle

Ccos 1‘}0

The v, - v, Spectral Swap - a mass hierarchy signal ?

normal mass hierarchy

survival probability P,

I

inverted mass hierarchy

]
08 here spectral swap energy E. | % 108
decreases with decreasing 6,
0.6 0.6
j:)O
(2]
8
0.4f 0.4-
0.2 0.2
O I 1 1 O
0 4 10 20 30 40 0 10 20 30 40
EC E (MeV) neutrino energy EC E (MeV) neutrino energy
— o e _9
vacuum mixing angle 0y = 0.01 vacuum mixing angle 6y = 10
N/
Ov ~ 013

swap has its origin in nonlinear neutrino self-coupling

H. Duan, G.M. Fuller, J. Carlson, Y.-Z. Qian, Phys. Rev. Lett. 99, 241802 (2007)



0-Ne-Mg Core Collapse Supernovae
The progenitors of these events are stars in the mass range
SMy — 12 Mg

K. Nomoto, Astrophys. J., 277, 791 (1984); 322, 206 (1987)

Post-collapse, these objects have a very steep matter density
profile above the neutron star and behind the (viable) shock.

Modeling flavor transformation in the neutronization burst
requires a full 3X3 mixing treatment with neutrino self-coupling.

We find a sequence of neutrino spectral swaps which, if detected,
could identify the neutrino burst as originating in an O-Ne-Mg
event instead of an ordinary Fe-core-collapse!

H. Duan, G.M. Fuller, J. Carlson, Y.-Z. Qian, Phys. Rev. Lett. 100, 021101 (2008)
C. Lunardini, B. Mueller, H.-Th. Janka, Phys. Rev. D 78, 023016 (2008)



squared-amplitude —

Full 3X3 treatment (with both atmospheric and solar mass-squared differences)

of the neutronization burst from an O-Ne-Mg core collapse: succession of spectral swaps

Distinctive pattern could tell us whether SN is an Fe-core or an O-Ne-Mg core collapse:

H. Duan, G.M. Fuller, J. Carlson, Y.-Z. Qian, Phys. Rev. Lett. 100, 021101 (2008)
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swap
normal mass hierarchy
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Probably now need to re-think strategy for
detecting the neutrino signal from a future
Galactic supernova.

Swap features that could fell us the neutrino mass hierarchy
and 0,5 are at relatively low energy, like solar neutrinos,
at least for Fe-core collapse supernovae.

Swap features might occur at late times post-core-bounce,
when neutrino fluxes are low.

Perhaps consider liquid scintillator and
liquid noble gas detectors for DUSEL.



The Figure of Merit

one core collapse supernova
in the Galaxy every 30 years . ..

but what about the relic core collapse
neutrino background (see C. Lunardini)



Nuclear Physics of Mass 40
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40 40 —~
Ve + 18AT — 1gK™ + €

Charged current capture
gives final state electron
and lots of nuclear de-excitation photons
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model dependence ?

If you can see the sense of a swap (i.e., most
transformation above or below some energy)
then you can get the hierarchy . . . .

But how robust are these swaps
in realistic (messy) supernova environments ?



to this end . . . open issues

® Non-Spherical geometries . . . 3-D hydro
e.g., the SASI and late re-heating Blondin & Mezzacappa Nature 445, 58 (2007)

e Inhomogeneous matter/neutrino environments,
e.g., what are the effects of inhomogeneities like turbulence
or the shock on the neutrino signal,

anisotropic neutrino emission? Friediand & Gruzinov (2006); Gava et al. (2009)
Galais, Kneller, Volpe, & Gava (2009); review by H. Duan & J. Kneller (2009)

® Full 3X3 flavor transformation in realistic environments,

“multi-angle”, phase averaging - necessary
e.g., A. Friedland hep-ph/1001.0996 (2010)

@ Extension to regime where scattering-induced de-coherence

Is significant: the full Quantum Kinetic Equations.

Abazajian, Fuller, Patel (2001); Strack & Burrows (2005)
Cardall (2007, 2009); Kishimoto & Fuller (2008)



CONCLUSIONS

@ The experimental revolution in neutrino physics has given us some of

the mass/mixing properties of the neutrinos.
Modelers should include this physics in models of core collapse supernovae
and in the early universe.

@ Neutrino self coupling can alter neutrino flavor evolution in SN, ultimately
causing large-scale flavor conversion deep in the supernova envelope,
despite the small measured neutrino mass-squared differences.
MSW-based analyses are inadequate.

This could affect neutrino-heated nucleosynthesis and the neutrino signal.

@ Neutrino self coupling-induced flavor collective modes

may produce distinctive signatures

which could allow a supernova neutrino signal to give us the

neutrino mass hierarchy and 0,5

as well as give us an observational window on the deep interior of the core
and distinguish between Fe-core collapse and O-Ne-Mg core collapse.



