Seeing Cosmic Neutrinos Through CMB Lenses

Brian Keating

w/ Meir Shimon, Nathan Miller, Chad Kishimoto, Cristel Smith & George Fuller

8 February 2010 INT Seattle

Neutrinos: Challenges and Opportunities!

- CMB Lensing is weak! Under 100 nK.
- Fortunately, we know that the unlensed CMB is very-nearly gaussian & we ~know the lensing power spectrum, with and without neutrinos.

 We can use the observed non-gaussianity (trispectrum) & the statistics of the CMB. Assume lensing causes any non-guassianity (Hu & Okamoto).

Cosmology is complementary: lensing potential is mainly sensitive to $\sum m_{\nu}$

 ν

P(k) & Neutrinos

So, if we can get P(k) we can weigh the neutrinos!

Lensed CMB T,E, & B

$$T(\hat{n}) = \tilde{T}(\hat{n} + \mathbf{d}(\hat{n}))$$

Transverse gradient of the lensing potential creates new CMB signals

$$\mathbf{d}(\hat{n}) = \nabla_{\perp} \psi(\hat{n})$$

Why is Polarization Essential?

- E is more sensitive than T to lensing. E-modes are caused by velocity gradients, whereas T is caused by both velocity and density gradients.
- B is extremely sensitive since it's a whole new signal at small angular scales.

 EB correlations are forbidden without lensing. Therefore, they are the most sensitive to the deflection angle (Kaplinghat et al, Lesgourges et al), and to neutrino physics (M_v and ξ, Shimon et al.).

Polarization Patterns

Polarization Generation by Thomson Scattering

Density fluctuations lead to E-mode Gravitational Waves & Lensing lead to: B-modes

 \bullet

"Blink and You'll Miss It!"

CMB Map GWB: > 2° scales Lensing, m_v < 0.1°

> Helmholtz'sThm: "grad": even parity "curl": odd parity

Without **B-modes**

"Blink and You'll Miss It!"

CMB Map GWB: > 2° scales Lensing, m_v < 0.1°

> Helmholtz'sThm: "grad": even parity "curl": odd parity

With <u>30 nK</u> B-modes!

"Is this Better or Worse?" Before & After Lensing Maps

Hu & Okamoto 2002

POLARBEAR Collaboration

University of California at Berkeley

Kam Arnold Daniel Flannigan Wlliam Holzapfel Jacob Howard Zigmund Kermish Adrian Lee P.I. Marius Lungu Mike Myers **Roger O'Brient** Erin Quealy Christian Reichardt Paul Richards Chase Shimmin **Bryan Steinbach** Huan Tran P.M. Oliver Zahn Lawrence Berkeley National Lab Julian Borrill Christopher Cantalupo Theodore Kisner

Eric Linder

Helmuth Spieler University of Colorado at Boulder

Aubra Anthony Nils Halverson

Co. I

University of California at San Diego

David Boettger Brian Keating

George Fuller

Nathan Miller

Ian Schanning

Meir Shimon

Hans Paar

Co. I

Imperial College

Andrew Jaffe Daniel O'Dea

Laboratoire Astroparticule & Cosmologie

Josquin Errard Joseph Martino Radek Stompor

<u>KEK</u>

Masashi Hasumi Haruki Nishino Takayuki Tomaru

McGill University

Peter Hyland Matt Dobbs Cardiff University Peter Ade

Peter Ade Carole Tucker

Designed to Measure B-modes Generated by:

1)Inflationary Gravitational Waves2)Lensing of the CMB

POLARBEAR: A High Energy Polarimeter

Wasc Bakersfield ancaster. Palmdale Simi Valley os Angele Long Beach Santa Ana Oceanside Q

Testing phase at Cedar Flat, CARMA, Near Bishop, CA

First light next mor

http://mountainpolarbear.blogspot.com/

http://www.youtube.com/watch?v=WY4SNIla3zk

POLARBEAR Detector Array

Focal plane

The POLARBEAR Receiver

Cold Reimaging Optics

Three HDPE lenses HWP

Cryogenics

- Cryomech Pulse-tube cooler
- Simon-Chase 'Hel0' refrigerator
 - Operating now at 0.250 K

2m

The Challenge of B-Mode Detection

Self-consistent treatment of Neutrino, BBN & CMB

 $\Omega_b, H_0 \rightarrow Y_n$

Shimon, Miller, Kishimoto, Smith, Fuller & Keating (2010) arXiv:1001.5088

The Relationship Between C_I and P(k)

$$C_{l}^{X} = 2/\pi \int dk \ k^{2} M_{l}^{X}(k)$$

$$M_{l} \approx P_{\psi}(k) T^{2}(k,t) j_{l}^{2}(kt)$$
Where:
$$P_{\psi} = Ak^{n}$$

T, the Transfer function from the Primordial P(k) to the Observed P(k)

Caution: Instrumental noise, systematics, & Cosmic variance

Degeneracy Parameter: Direct impact on Power Spectra

Shimon, Miller, Kishimoto, Smith, Fuller & Keating (2010) arXiv:1001.5088

Degeneracy Parameter: Lensing Angle Power Spectra

From Power Spectra to Likelihoods

$$L = L(\hat{C}_{I}^{X}; \overline{C}_{I}^{X}), \quad x \in (T, E, B)$$

$-2\ln(L) = \sum_{l} [(2l+1)(\ln \overline{C_{l}}^{T} + \hat{C_{l}}^{T} / \overline{C_{l}}^{T} - 1) - (2l-1)\ln \hat{C_{l}}^{T}]$

Forecast for POLARBEAR The ξ - $\Omega_c h^2$ Degeneracy

Forecast for POLARBEAR The M_v - H_0 Plane

Shimon, Miller, Kishimoto, Smith, Fuller & Keating (2010) arXiv:1001.5088

Forecasted CMB 2σ Upper Limits on Neutrino Parameters

$$-0.005 < \xi_{v_e} < 0.07$$

 $\xi_{v_{\mu}} < 2.6$

BBN, Abundances

$$M_{\nu} < 0.29 eV$$

 $\xi_{\nu_e} < 0.11$
 $\xi_{\nu_{\mu}} < 0.49$

PLANCK

 $M_{v_{v}} < 0.20 \text{ eV}$ $\xi_{v_{v_{e}}} < 0.045$ $\xi_{v_{\mu}} < 0.29$

$$M_{_{v}} < 0.75 \text{ eV}$$

 $\xi_{_{v_e}} < 0.62$
 $\xi_{_{v_{\mu}}} < 1.1$

POLARBEAR

CMBPOL/EPIC

Shimon, Miller, Kishimoto, Smith, Fuller & Keating (2010) arXiv:1001.5088

"To See Lensing, Use a Big Mirror!"

CMBPOL References

<u>cmbpol.uchicago.edu</u> (Including Dodelson et al, Smith et al.)

Bock et al. "Study of the Experimental **Probe of Inflationar Cosmology (EPIC)**-Internediate Missio for NASA's Einstein **Inflation Probe**" astro-ph/0906.1188 "Spacebear"

0.001

lightest m, (eV)

01

0.01

