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 k_fs~0.03h/Mpc 
 for m_ν~0.1eV



CMB 

Galaxy Survey Ly-alpha 

Weak Lensing 

Neutrino effect for masses of 0.1eV: ~7% 
suppression in power spectrum amplitudes 



•  The linear theory ceases to 
be accurate even on these 
large length scales, k>0.1/
Mpc  (~50Mpc: δ~O(0.1)) 

•  An empirical model is 
employed: nuisance 
parameters to model 
galaxy biases (also see 
Reid et al where the halo 
model was used)  

€ 

Pg (k) = b2Pm
L (k)1+Qnlk

2

1+1.4k

€ 

Veff (LRG) ~ 1(Gpc /h)
3

Veff (Main) ~ 0.1(Gpc /h)
3

ΔP
P
∝

1
Veff

Nonlinear regime 

Tegmark et al. 04

Mν,tot<0.94eV(95%C.L.)



•  Nonlinear clustering 
effect is smaller at 
higher redshifts 

•  Cosmological probes 
targeting  high-
redshift structures 
(e.g. 21cm) may 
allow a cleaner 
interpretation of the 
measurement Springel+05, Nature
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•  At large scales and over relevant relevant 
redshifts, gravity dominates, so need to solve the 
Vlasov-Poisson equations in the non-relativistic 
limit 

–  Note equations are in 1+6D, and intrinsically nonlinear 
–  Use N-body method: sample the phase-space PDF with 

N-body particles and evolve the system of interacting 
particles 

–  The systematic errors are well understood?  
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Cosmological Vlasov-Poission equations 

•  At small scales, need to add gas physics and astrophysical feedback 
–  Simulations get harder  
–  These physics are poorly understood 
–  Need to calibrate the simulations with observational constraints. This is doable? 

  Goal: The nonlinear power spectrum at a 1%-level accuracy up to k~1/Mpc   



Gravity-only cosmology code
•  Initial conditions 

–  Simulation begins with the initial conditions well constrained by CMB: (i) Pick the 
initial power spectrum of CDM perturbations; (ii) Generate a single realization of 
the density field in k-space, use the Poisson equation to solve for the velocity 
potential; (iii) use the Zel’dovich (or some other approximation) to move each 
particles off a grid (quite start, i.e. at a sufficiently high initial redshift) 

•  Time-stepping 
–  Use symplectic/leap-frog integration; first “stream” particles, then compute inter-

particle forces, update velocities, do next “stream” and redo 

•  Force computation  
–  Direct particle-particle force evaluation is computationally expensive given large 

cosmological volume; use approximate tricks (tree, PM, AMR, …) to reduce order 
of algorithm to NlogN  

•  Tests 
–  Many sources of systematic errors: develop suite of tests for robustness of 

simulation results, check everything multiple times 

•  Analysis 
–  Compute P(k), etc. Make halo catalogs, merger trees, Mock observational data  

(from slide of S. Habib at SF09 workshop)



•  Code comparison 
•  Testing sources of systematic errors  

–  Initial conditions (initial condition 
generation, initial redshift) 

–  Resolution tests (box size, particle 
numbers, mass resolution, time 
stepping) 

•  Secure parameters: 1Gpc box, 
1024^3 particles, z_i~200, TreePM  

•  A 1%-level accuracy at k<1/Mpc 
achieved! 

•  Fitting formula (Halofit)  
underestimates by ~5%  

The Coyote Universe Project: 
aimed at calibrating nonlinear 
power spectrum at 1%-level  
precision for CDM cosmologies
(Heitmann et al. 07, 08, 09)



•  Selected 37 cosmological 
models in 5D parameter 
space (ωm, ωb, ns, σ8, w), over 
ranges of parameters allowed 
by WMAP 

•  Use the sampling method of 
the model space based on the 
Latin hypercubic + 
orthogonal array design 

•  Ran about 1000 realizations 
for the 37 models  

–  For each model: 20 realizations 
(16 low-resolutions, 4 medium 
resolutions) + 1 high-resolution 
run 

•  Linux cluster: 2580 AMD 
Opeterons (2.6GHz)

 sampling method (an example of  3D) 

Heitmann et al.



•  Emulate the nonlinear power 
spectrum at arbitrary point in 5D 
parameter space by interpolating 
the 37 model results 

•  Used the PCA decomposition of 
the nonlinear P(k), and the 
Gaussian Process Modeling for 
the interpolation 

•  Achieve ~1% accuracy

Comparing power spectra, emulated from the 
37 models, with the directly simulated spectra 



•  Assumption: pressure-less and irrotational fluid for CDM + baryon 
perturbations  

•  On sub-horizon scales, the self-gravitating dynamics in an expanding 
universe is described as 

•  Perturbative expansion 

•  Compute the nonlinear P(k) including the higher-order corrections   
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Jaskiewicz (81), Vishniac (83), Goroff+(86), Suto & Sasaki (91)…



Crocce & Scoccimarro 08 

RPT 

Linear 

Error bars = ~100 Gpc^3 (all-sky) 
~5×(Error) for Stage-III surveys

Also see 
Jeong & Komatsu 06 
Taruya & Hiramatsu 08 
Matsubara 08 



•  The real universe should have two dark matter components (CDM + 
neutrinos) 

•  The phase space density of relic neutrinos obey the (perturbed) Fermi-Dirac 
distribution 

•  Neutrinos have large thermal motion (> velocity disp. of galaxy clusters) 

•  Structure formation at relevant redshifts is induced by gravity of total matter   
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•  Structure formation in the real universe is caused by  CDM + neutrinos 
•  The Big-Bang relic neutrinos have large thermal motion 

CDM 
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The r.m.s. thermal velocity > the velocity dispersion of galaxy clusters 
(~1000km/s): neutrinos can’t much cluster on small scales (free-streaming)



•  The pioneer work by Klypin et al. (1993) 
•  PM code: each simulation uses 7 sets of N-

body particles 
–  CHDM model: Ω_cb=0.7,　Ω_ν=0.3 (mν,tot~7eV) 
–  One set is for CDM (128^3) 
–  6 sets are for neutrinos (6 × 128^3 particles): more 

particles are used to better sample the FD phase-
space density of neutrinos at each grid 

–  For the initial conditions of neutrinos, the random 
thermal velocities are added to each particle 

–  Follow the trajectories of each particles according 
to the gravitational force  

CDM

HDM 
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•  P

7Mpc×7Mpc×220kpc in the 14Mpc (on a side) simulation

 without neutrinos  with neutrinos Klypin et al. 93 

P(k)h3

Ω_cb=0.7(Ω_c=0.6),　
Ω_ν=0.3 (mν,tot~7eV)

100Mpc simulation 
256^3 CDM particles, 2×256^3 neutrinos

Klypin et al. 97 



•  More realistic: assume smaller 
mass scales of neturinos 

–  Ωm=Ωcdm+Ωb+Ων=0.3, ΩΛ=0.7, 
h=0.7 

–  Right panel: Ων=0.013(0.6eV), 
fν=0.043 

•  Issues need to be more carefully 
studied 

–  Initial redshift (z_i=4) 
–  Initial conditions: how to generate 

the initial velocity fields of each 
component according to the 
different TFs 

–  Discrete effect, especially for small 
neutrino masses 

–  Numerical artifacts?  
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Brandbyge, Hannestad+ 08

CDM CDM+M_nu(0.6eV)

 initial redshift: z_i=4

  z=0

256^3 CDM + 512^3 neutrinos



•  The suppression in power spectrum amplitudes is enhanced in the weakly nonlinear 
regime, compared to the linear theory prediction (also Saito, MT, Taruya PRL 08)

Brandbyge, Hannestad+ 08
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Hu, Eisenstein, Tegmark 98 
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•  The nonlinear clustering is mainly driven by the cold component 
(CDM plus baryon) on relevant scales and for neutrino mass scales 
of interest 

•  Assume that neutrinos stay in the linear regime (see later) 
•  The higher-order corrections of CDM + baryon perturbations are 

affected by the growth rate including the neutrino effect 

•  The nonlinear power spectrum including the 1-loop correction is 
given as

Saito, MT, Taruya PRL 08, PRD 09; Wong 08 
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Brandbyge & Hannestad 08 
•  Avoid the difficulty of sampling phase-space 

PDF with a finite number of N-body particles 
•  Solve the linearized Boltzmann equation for 

neutrino perturbations at each grid 
–  Can use publicly available code of the Boltzmann 

solver (e.g. CAMB) 

–  Obtain the neutrino perturbations from the moments 

CDM: particles 
Neutrinos: grids
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•  Only includes the linear-order neutrino perturbations (note the phase information 
of neutrino density perturbations is included) 

•  Potentially promising method, but needs to be further studied
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•  Include the contribution of 
nonlinear CDM+baryon density 
perturbation  

•  Note: 
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Saito, MT, Taruya 09; also Wong 08; Lesgourgues et al 09  

•  The PT theory predictions can be used to test the simulation results 
•  The nonlinear correction due to the CDM perturbations may be readily included in 

a numerical solver of the linearized Boltzmann equations of neutrino perturbations 

 mν~0.6eV
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•  Estimate a static solution of the neutrino 
distribution given a spherically 
symmetric CDM profile
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Dashed: neutrinos from Botlzmann eq. 
Dotted: from simulations of Kofman et al (96) 



•  Comparing the perturbation 
predictions with the SDSS 
measurements 

–  Include parameters of nonlinear 
galaxy bias in the model predictions 

–  Fitting the model to the measured 
power spectrum with varying all the 
parameters 

–  Derive the neutrino mass constraint, 
marginalized over other parameters  

•  mν,tot<0.67eV(95% CL), similar 
to the results in Reid et al. 09)
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•  Nonlinear structure formation for CDM cosmologies is now better understood 
–  N-body simulations: most powerful tool, 1% accuracy achieved up to k~1/Mpc 
–  Refined perturbation theory approach: complementary to N-body simulations, 

remarkable agreement with the simulations up to k~0.1/Mpc 
–  Issues: baryonic effects  

•  Very important to study nonlinear structure formation for a C+HDM model, 
assuming relevant scales of neutrino masses (<0.6eV) to attain the full potential 
of planned surveys (galaxy, WL, cluster) 

•  Simulating structure formation for C+H models is still an open issue 
–  Particle based simulations: two kinds of N-body particles (computationally 

expensive?) 
–  Hybrid simulations: N-particles for CDM, grids for neutrinos where the Boltzmann 

eqns. need to be solved at each grid (nonlinear corrections to the Boltzmann eqns.?) 

•  Improving the PT approach for C+HDM models 
–  Complementary to simulation based studies 

•  Neutrino perturbations are small anyway, probably possible to develop 
reasonably accurate hybrid methods 
–  Simulations + PT approach + halo models?   


