# A Gauge-Mediated Embedding of the S-MSSM

J. Pocahontas Olson University of Notre Dame

PHENO May 2010

## Goal of Embedding S-MSSM

Previous talk discussed advantages of S-MSSM as a low energy theory.

We wish to embed the S-MSSM in a predictive SUSY breaking scheme: Gauge Mediation.

Review history of embedding singlet models in GMSB.

Discuss scanning the S-MSSM parameter space, lifting lightest Higgs mass without heavy stops.

# Gauge Mediated Supersymmetry Breaking



$$\langle X \rangle = M + \theta^2 F$$



Chiral
Superfield X

Quarks
Leptons
Higgs
Superpartners

GMSB flavor blind

## Soft Breaking Terms

$$M_i(M) = n \frac{\alpha_i}{4\pi} \frac{F}{M}$$

$$m_{\tilde{f}}^2(M) = 2n \sum_i C_i^{\tilde{f}} \frac{\alpha_i^2}{16\pi^2} \left(\frac{F}{M}\right)^2 \qquad \lambda^a \sqrt[3]{\psi_{\Phi} \psi_{\Phi}} \lambda^a + \dots$$

$$A_i(M) = 0$$



n number of messenger pairs,  $C_i^f$  quadratic Casimir

#### Minimal Form

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \chi X \bar{\Phi} \Phi$$

Generates m<sub>s</sub><sup>2</sup> at 3-loops

Problem: m<sub>s</sub><sup>2</sup> too small

 $\Rightarrow$  m<sub>s</sub><sup>2</sup> gives the Singlet a vev



- $\Rightarrow \mu_{\text{eff}} \equiv \lambda v_s$  needed to give mass to charginos
- ⇒ ruled out by experiment

## Couple Singlet to Messengers

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3$$

$$+\chi X\bar{\Phi}\Phi + \chi_s S\bar{\Phi}\Phi$$

Generates m<sub>s</sub><sup>2</sup> at 1-loop

Problem: m<sub>s</sub><sup>2</sup> too big



⇒ vacuum overstabilized

Can generate tadpoles, to cancel part of m<sub>s</sub><sup>2</sup>, but not calculable.

## Increase Number of Messengers

$$W = \lambda S H_u H_d + \frac{1}{3} \kappa S^3$$
$$+ \chi X (\bar{\Phi}_1 \Phi_1 + \bar{\Phi}_2 \Phi_2) + \chi_s S \bar{\Phi}_1 \Phi_2$$

Generates ms<sup>2</sup> at 2-loops

Problem:



Generates  $\mu_{eff}$  of right order, but need a heavy spectrum to get  $m_h$  above LEP bound

(Delgado, Giudice and Slavich 2007)

## S-MSSM Can Use Minimal GMSB

$$W = (\mu + \lambda S)H_uH_d + \frac{1}{2}\mu_s S^2 + \chi X\bar{\Phi}\Phi$$

Generates m<sub>s</sub><sup>2</sup> at 3-loops

No Problem:



 $m_s^2$  is allowed to be small, not needed to generate  $\mu$  term.

#### S-MSSM Potential

#### Neutral Scalar Higgs Potential

$$\begin{split} V_H^0 &= \frac{1}{8} (g^2 + g'^2) (|H_d^0|^2 - |H_u^0|^2)^2 \\ &+ (m_u^2 + |\mu + \lambda S|^2) |H_u^0|^2 + (m_d^2 + |\mu + \lambda S|^2) |H_d^0|^2 \\ &+ m_s^2 |S|^2 + |\mu_s S - \lambda H_u^0 H_d^0|^2 \\ &+ (B_s S^2 - (B_\mu + \lambda A_\lambda S) (H_u^0 H_d^0) + h.c.) \end{split}$$

g, g' are gauge couplings in SU(2) and U(1)

soft-breaking terms

#### S-MSSM Potential

#### Neutral Scalar Higgs Potential

$$\begin{split} V_H^0 &= \frac{1}{8} (g^2 + g'^2) (|H_d^0|^2 - |H_u^0|^2)^2 \\ &+ (m_u^2 + \mu + \lambda S|^2) |H_u^0|^2 + (m_d^2 + \mu + \lambda S|^2) |H_d^0|^2 \\ &+ m_s^2 |S|^2 + |\mu_s S - \lambda H_u^0 H_d^0|^2 \\ &+ (B_s S^2 - (B_\mu + \lambda A_\lambda S) (H_u^0 H_d^0) + h.c.) \end{split}$$

g, g' are gauge couplings in SU(2) and U(1)

Inputs: F, M determine soft-breaking terms  $\mu$ ,  $\mu_s$   $B_s$ ,  $\tan \beta$ 

#### S-MSSM Potential

#### Neutral Scalar Higgs Potential

$$\begin{split} V_H^0 &= \frac{1}{8} (g^2 + g'^2) (|H_d^0|^2 - |H_u^0|^2)^2 \\ &+ (m_u^2 + \mu + \lambda S|^2) |H_u^0|^2 + (m_d^2 + \mu + \lambda S|^2) |H_d^0|^2 \\ &+ m_s^2 |S|^2 + |\mu_s S - \lambda H_u^0 H_d^0|^2 \\ &+ (B_s S^2 - (B_\mu + \lambda A_\lambda S) (H_u^0 H_d^0) + h.c.) \end{split}$$

g, g' are gauge couplings in SU(2) and U(1)

Outputs:  $\lambda$ ,  $B_{\mu}$ ,  $v_s$ 

## Scanning Parameter Space

For a given M,  $\mu$ ,  $\mu$ s, tan $\beta$ ,

- Fix  $\lambda$  to be largest  $\lambda$  still perturbative at GUT scale
- Fix F/M so that v = 174 GeV
- Derive B<sub>µ</sub> as an output

Numerically calculate spectrum

#### Predominant LEP constraints:

- \* NLSP (lightest neutralino), depends where decays
  - \* outside detector ( $\sqrt{F} \gtrsim 10^6 \, \text{GeV}$ ) 46 GeV
  - \* inside detector  $(\sqrt{F} \le 10^6 \,\text{GeV})$  96 GeV
- \* Chargino  $(\tan \beta < 40)$  94 GeV

## Scanning Parameter Space

## Maximize mh using µs



## Sampling of Results

| M         | $\tan \beta$ | $\mu$ | $\mu_s/\mu$ | $ m_{	ilde{t}} $ | $MSSM m_h$ | $m_h$ |
|-----------|--------------|-------|-------------|------------------|------------|-------|
| $10^{8}$  | 2            | 600   | 2.5         | 920, 790         | 86         | 123   |
| $10^8$    | 6            | 500   | 6           | 900, 750         | 110        | 117   |
| $10^{13}$ | 2            | 400   | 2.5         | 460, 360         | 74         | 115   |
| $10^{13}$ | 2            | 850   | 2.5         | 960, 710         | 85         | 123   |
| $10^{13}$ | 2.5          | 750   | 2.75        | 960, 730         | 94         | 124   |
| $10^{13}$ | 3            | 700   | 3.5         | 970, 730         | 100        | 123   |
| $10^{13}$ | 6            | 400   | 6           | 630, 470         | 107        | 114   |
| $10^{13}$ | 6            | 600   | 6           | 940, 720         | 111        | 118   |

(all masses in GeV)

Not sensitive to number of messenger pairs

Phenomenology of S-MSSM is same as MSSM, but with heavier Higgs than would be expected for the stop masses

#### Conclusion

By sacrificing the solution to the  $\mu$ -problem, we find in the S-MSSM a solution to the little hierarchy problem.

We have successfully embedded the S-MSSM in Gauge Mediation.

There are large regions of parameter space, where the stops are below a TeV and the lightest Higgs is above the LEP bound.