Higgs Doublet and Complex Singlet and $U(1)^{\prime}$ Extensions to the MSSM

Valerie Plaus
University of Wisconsin-Madison

Outline

- Doublet Extensions to MSSM
- Nelson-Randall Model
- Examples
- Conclusions

Beyond Singlets:

4 Higgs Doublets and Singlets

- work in progress with Barger, Everett, McCaskey

Fields	$S U(3)_{C}, S U(2)_{L}, U(1)_{Y}, U(1)^{\prime}$
H_{1}, H_{3}	$\left(1,2,-1 / 2, Q_{1,3}\right)$
H_{2}, H_{4}	$\left(1,2,1 / 2, Q_{2,4}\right)$
S_{i}	$\left(1,1,0, Q_{S_{i}}\right)$

- Singlets added as needed to solve μ problem(s)

Motivation

- Top-down models
(String theory: often has many doublets and singlets
- "natural" large tan β with mixed terms

$$
H_{2} \cdot H_{3}, H_{4} \cdot H_{1}
$$

(A. Nelson and L. Randall; hep-ph/9308277)

As yet unstudied...

- not necessary for EW breaking
- issue of gauge unification
- extra exotics (GUTs)
- gauge unification not fundamental (string models)

As yet unstudied...

$$
W=\mu H_{2} \cdot H_{1}+h_{u i} \bar{u}_{i} Q_{i} \cdot H_{2}-h_{d i} d_{i} Q_{i} \cdot H_{1}-h_{e i} \bar{e}_{i} L_{i} \cdot H_{1}
$$

- A major concern: >1 Higgs couples to up-type or down-type quarks
- tree level FCNCs

$$
W \supset h_{d_{i}} \bar{d}_{i} Q_{i} \cdot H_{1}+h_{d_{i}}^{\prime} \bar{d}_{i} Q_{i} \cdot H_{3}
$$

- We'll address this on a case-by-case basis...

Misiak, Pokorski and Rosiek; hep-ph/9703442
S.L. Glashow and S. Weinberg; Natural Conservation Laws for Neutral Currents: Phys. Rev. D, 1977 (ID 10.1103/PhysRevD.15.1958)

- Goal: to categorize and explore phenomenology of various extra doublet models that address the μ problem
- Observed theme: relatively difficult to get viable scenarios
- Reason: accidental global symmetries
- Challenge: to minimally break symmetries without reintroducing μ problem(s)

Nelson-Randall Model

$$
W=\mu_{41} H_{4} \cdot H_{1}+\mu_{23} H_{2} \cdot H_{3}
$$

- doesn't solve the μ problem
- Naive extension: $W=a_{1} S H_{4} \cdot H_{1}+a_{2} S H_{2} \cdot H_{3}$
- problem: 1 extra accidental symmetry
- 1 Goldstone boson after SSB
- 1 unobserved axion or extra force

Aside

- problem was already observed for models with many singlets and a $U(1)^{\prime}$
(P. Langacker, G. Paz, I. Yavin arXiv:0811.1196)

$$
V\left(S_{1} \ldots S_{N}\right)=\sum_{i} m_{i}^{2}\left|S_{i}\right|^{2}+\frac{g^{\prime 2}}{2}\left(\sum_{i} Q_{i}\left|S_{i}\right|^{2}\right)^{2}
$$

- N-1 accidental symmetries to be broken by superpotential singlet terms
- bilinear terms: easiest, but new μ problem
- trilinear: harder to obtain by gauge invariance
- Now we have doublets as well
-> even more constrained in field combinations
- Goal: to explore this issue systematically
- Are there any viable scenarios?
- Naive Nelson-Randall extension is out...

2 Singlet Superpotentials

- 2 singlet N-R model $W=a_{1} S_{1} H_{4} \cdot H_{1}+a_{2} S_{2} H_{2} \cdot H_{3}$
- 2 Goldstone bosons
- What about adding 2 extended N-R models?

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{1} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{2} H_{2} \cdot H_{3}
$$

- 2 Goldstone bosons -> only 1 can be broken by trilinear $S_{1}^{2} S_{2}, S_{1} S_{2}^{2}$ or bilinear $S_{1} S_{2}$

2 Singlet Superpotentials

- 2 singlet N-R model $W=a_{1} S_{1} H_{4} \cdot H_{1}+a_{2} S_{2} H_{2} \cdot H_{3}$
- 2 Goldstone bosons
- What about adding 2 extended N-R models?

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{1} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{2} H_{2} \cdot H_{3}
$$

- 2 Goldstone bosons -> only 1 can be broken by trilinear $S_{1}^{2} S_{2}, S_{1} S_{2}^{2}$ or bilinear $S_{1} S_{2}$

2 Singlet Superpotentials

- 2 singlet N-R model $W=a_{1} S_{1} H_{4} \cdot H_{1}+a_{2} S_{2} H_{2} \cdot H_{3}$
- 2 Goldstone bosons
- What about adding 2 extended N-R models?

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{1} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{2} H_{2} \cdot H_{3}
$$

- 2 Goldstone bosons \rightarrow only 1 can be broken by trilinear $S_{1}^{2} S_{2}, S_{1} S_{2}^{2}$ or bilinear $S_{1} S_{2}$

2 Singlet Superpotentials

- 2 singlet N-R model $W=a_{1} S_{1} H_{4} \cdot H_{1}+a_{2} S_{2} H_{2} \cdot H_{3}$
- 2 Goldstone bosons
- What about adding 2 extended N-R models?

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{1} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{2} H_{2} \cdot H_{3}
$$

- 2 Goldstone bosons -> only 1 can be broken by trilinear $S_{1}^{2} S_{2}, S_{1} S_{2}^{2}$ or bilinear $S_{1} S_{2}$

2 Singlet Superpotentials

- 2 singlet N-R model $W=a_{1} S_{1} H_{4} \cdot H_{1}+a_{2} S_{2} H_{2} \cdot H_{3}$
- 2 Goldstone bosons
- What about adding 2 extended N-R models?

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{1} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{2} H_{2} \cdot H_{3}
$$

- 2 Goldstone bosons -> only 1 can be broken by trilinear $S_{1}^{2} S_{2}, S_{1} S_{2}^{2}$ or bilinear $S_{1} S_{2}$
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both
- What about
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}$
- only 1 Goldstone! So we try...
$W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{2} H_{4} \cdot H_{1}+a_{4} S_{1} H_{2} \cdot H_{3}+\mu S_{1} S_{2}$
- Correct mass behaviour, what about FCNCs?
- Gauge invariance ->

$$
\begin{gathered}
Q_{1}=Q_{3} \\
Q_{S_{1}}=-Q_{S_{2}} \\
Q_{2}=Q_{4}+2 Q_{S_{2}}
\end{gathered}
$$

- Can only prevent FCNC from up-type or down-type, not both

Superpotential

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{3} H_{4} \cdot H_{1}+a_{4} S_{4} H_{2} \cdot H_{3}
$$

- Cases:
(2) all different $S_{1} \neq S_{2} \neq S_{3} \neq S_{4}$
(3 different $S_{i}=S_{j} \neq S_{k} \neq S_{l}$
(2) only 2 singlets $S_{i}=S_{j} \neq S_{k}=S_{l}$
c only 1 singlet $S_{1}=S_{2}=S_{3}=S_{4}$

Superpotential

$$
W=a_{1} S_{1} H_{2} \cdot H_{1}+a_{2} S_{2} H_{4} \cdot H_{3}+a_{3} S_{3} H_{4} \cdot H_{1}+a_{4} S_{4} H_{2} \cdot H_{3}
$$

- all or 3 different: 4 or 3 Goldstone bosons
- only 2 singlets:
($\mathrm{S}_{1}=\mathrm{S}_{3}$ or $\mathrm{S}_{1}=\mathrm{S}_{4}$: extra Goldstone boson
- $\mathrm{S}_{1}=\mathrm{S}_{2}$: correct Goldstone bosons
- only 1 singlet: correct Goldstone bosons
- Consequences: possible FCNCs

Observations so far...

- Global symmetries \rightarrow breaking in superpotential restricts $U(1)^{\prime}$ charges
- In progress: study viable scenarios and examine FCNC problem in more detail
- Future:
- RGEs: connect to top down models
- Anomalies and GUT embedding consequences

Summary

- global symmetries: issues for multi scalar Higgs sectors
- previously studied for singlet extended models
- In progress: search for viable scenarios, including Z^{\prime} and FCNC constraints
- stay tuned!

References

- Cvetic, M. et al. arXiv: hep-ph/9703317

Dawson, S. arXiv: hep-ph/9712464

- Martin, S. arXiv: hep-ph/9709356

Thank you!

