Unparticle Solution to Hierarchy

Nicholas Setzer with T. Gherghetta

University of Melbourne

May 10, 2010

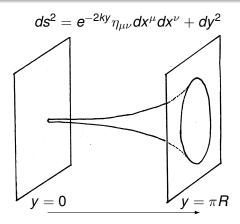
NS with T. Gherghetta (UniMelb)

Unparticle Soln to Hierarchy

May 10, 2010 1 / 12

Introduction

Randall Sundrum One (RS1)



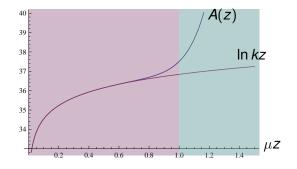
- Need to stabilize *R* distance (Goldberger-Wise)
- Why not use GW scalar to replace IR brane?

The BG Soft-Wall Model

BG Soft-Wall Geometry

$$ds^2 = e^{-2A(z)} \Big(\eta_{\mu
u} dx^\mu dx^
u + dz^2 \Big)$$

 $A(z) = \ln kz + rac{2}{3} (\mu z)^
u$



NS with T. Gherghetta (UniMelb)

イロト イヨト イヨト イ

• Need to achieve $\mu/k \sim 10^{-16}$

- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathrm{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathrm{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

< A > < > >

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathrm{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathrm{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- E - N

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field

Boundary potential:

 $\lambda_{\rm UV} = W(\eta_0) + \partial_\eta W(\eta_0)(\eta - \eta_0) + m_{\rm UV}(\eta - \eta_0)^2$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = \boldsymbol{W}(\eta_0) + \partial_{\eta} \boldsymbol{W}(\eta_0)(\eta - \eta_0) + \boldsymbol{m}_{\mathsf{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require
$$\eta_0 = \langle \eta \rangle_0$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k ?
- Consider:
 - μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = \boldsymbol{W}(\eta_0) + \partial_{\eta} \boldsymbol{W}(\eta_0)(\eta - \eta_0) + \boldsymbol{m}_{\mathsf{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

The value of the field at the UV brane is

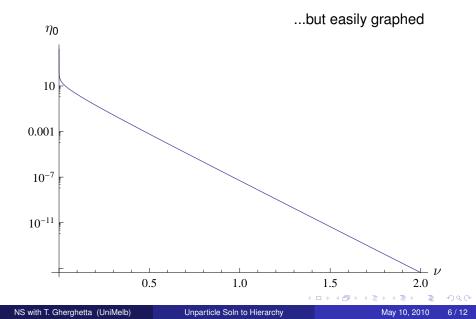
$$\begin{split} \eta_0 &= \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} \right. \\ &\left. + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right] \end{split}$$

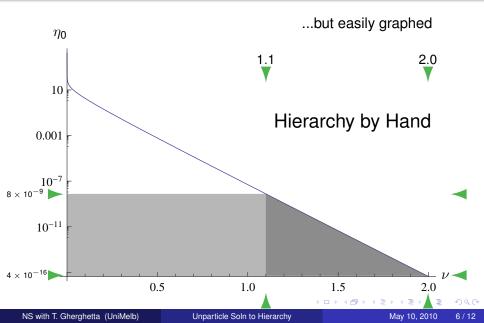
• Not easily inverted...

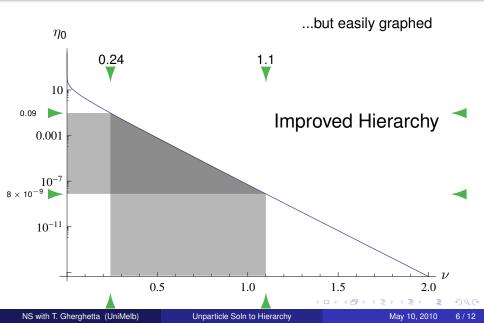
• The value of the field at the UV brane is

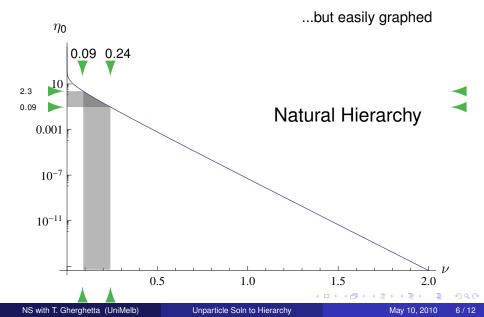
$$\eta_0 = \pm \sqrt{3} \left(\frac{\nu+1}{\nu} \right) \left[\sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} + \left(\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu} \right)^2} + \sinh^{-1} \sqrt{\frac{2}{3} \frac{\nu}{\nu+1} \left(\frac{\mu}{k} \right)^{\nu}} \right]$$

Not easily inverted...









Scalar's Potential

Of course, ν has other consequences... Look at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

Gives η 's mass as

$$m_{\eta}^2 = -2k^2\nu\Big(1-\frac{\nu}{8}\Big)$$

AdS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + rac{m_\eta^2}{k^2}} = 2 + rac{1}{2} |4 -
u|$$

Operator Dimension

The breakdown is

Hierarchy by Hand $\nu > 1$ $\Delta > \frac{5}{2}$ Improved Hierarchy $\nu \sim 1$ $\Delta \sim \frac{5}{2}$ Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Operator Dimension

The breakdown is

Hierarchy by Hand
$$\nu > 1$$
 $\Delta > \frac{5}{2}$ Improved Hierarchy $\nu \sim 1$ $\Delta \sim \frac{5}{2}$ Natural Hierarchy $0 < \nu < 1$ $2 < \Delta < \frac{5}{2}$ Fractional Dimension!

• • • • • • • • • • • •

Fluctuations

Fluctuations Parameterized

$$ds^2 = e^{2(F-A(z))} \Big[((1-2F)\eta_{\mu
u} + h_{\mu
u}) dx^{\mu} dx^{
u} + 2A_{\mu} dx^{\mu} dz + dz^2 \Big]$$

 $\eta = \langle \eta
angle + \tilde{\eta}$

- Consider Just Scalar Modes
 - gravi-scalar, F
 - scalar tower of η

• Suitable field redefinition permits writing as Schrödinger equation

$$\left(-\partial_z^2+V_{\mathsf{SE}}(z)\right)\psi=m^2\psi$$

• Start with *m* = 0 modes

There are no massless modes

Consider theory without UV brane

- Theory invariant under $A(z) \rightarrow A(z) + C$
- Look again at parameterization of fluctuations:

$ds^{2} = e^{2(F - A(z))} \left[\left((1 - 2F)\eta_{\mu\nu} + h_{\mu\nu} \right) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2} \right]$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

< 回 ト < 三 ト < 三

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

 $ds^{2} = e^{2(F - A(z))} \left[\left((1 - 2F)\eta_{\mu\nu} + h_{\mu\nu} \right) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2} \right]$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

▲ □ ▶ - ▲ □ ▶

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^{2} = e^{2(F-A(z))} [((1-2F)\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2}]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^{2} = e^{2(F-A(z))} [((1-2F)\eta_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu} + 2A_{\mu}dx^{\mu}dz + dz^{2}]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^{2} = e^{2(F-A(z))} [((1-2F)\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2}]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^{2} = e^{2(F-A(z))} [((1-2F)\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2}]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^{2} = e^{2(F-A(z))} [((1-2F)\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^{2}]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

Fluctuations

Scalar Modes - Massive

Massive modes dynamical variable

$$\mathbf{v} = -\sqrt{2}e^{-3\mathcal{A}(z)/2}rac{\langle\eta
angle'}{\mathcal{A}'(z)}igg(-rac{1}{2}F+rac{\mathcal{A}'(z)}{\langle\eta
angle'} ilde\etaigg)$$

Schrödinger Potential Behavior

$$\begin{array}{ll} \nu > 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to \infty \\ \nu = 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to \mu^2 \\ \nu < 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to 0 \end{array}$$

Fluctuations

Scalar Modes - Massive

Massive modes dynamical variable

$$m{v} = -\sqrt{2}m{e}^{-3m{A}(z)/2}rac{\langle\eta
angle'}{m{A}'(z)}igg(-rac{1}{2}m{F}+rac{m{A}'(z)}{\langle\eta
angle'} ilde\etaigg)$$

Schrödinger Potential Behavior

$$\begin{array}{ll} \nu > 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to \infty \\ \nu = 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to \mu^2 \\ \nu < 1 & z \to \infty \Rightarrow V_{\mathsf{SE}} \to 0 \end{array} \qquad \begin{array}{l} \mathsf{Continuum} \\ m^2 > 0 \\ (\mathsf{Unparticles}) \end{array}$$

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- $\nu < 1$ corresponds to fractional-dimension operators in dual theory
- $\nu < 1$ implies a continuum of modes without a mass gap in the 5D theory
- Thus, natural hierarchy implies unparticles