Revealing Randall-Sundrum Hidden Valleys

Jay Hubisz Syracuse University at PHENO 2010 5/10/2010

w/ Don Bunk (S.U.) arXiv:1002.3160 [hep-ph] arXiv:0901.2933 [hep-ph] (for related work)

Hidden Valley Models

Strassler + Zurek hep-ph 0604261 + 0605193 + 0607160

Simple Picture

Hidden Valley Models

Hidden sectors which are on the verge of discovery through some TeV scale bridge

Poorly constrained
 (no LEP – TeVatron bounds)

Many potential unique signatures

displaced vertices - long "tunneling" rate

In non-standard Higgs decays: http://arxiv.org/abs/hep-ph/0605193

e.g. dramatic multi-leptons, etc.

RS "Higgs" Models

- Many models of electroweak symmetry breaking in RS geometry
 - Higgsless models (review: hep-ph/0510275)
 - 5D Composite Higgs (ph/0412089 ph/0306259)
- Geometric warping explains the hierarchy between the Planck and electroweak scales
- AdS/CFT relates such models to 4D strongly coupled theories (but 5D model is calculable)

Example: Higgsless Models

Higgsless Models + U(1)_{Hs}

Hiding the Hidden Sector

II. SM has no direct interactions with hidden sector

RS Gravity as a Bridge

Usual gravity couples proportional to 1/Mpl

In RS, warping causes radion and KKgravitons to couple proportional to 1/TeV

radion (relative motion of the two branes) particle with mass – 114–1000 GeV

ø very well studied (lightest new particle?)

KK-gravitons - 1000-3000 GeV

© COUPLINGS ARE INDEPENDENT OF g5D

Simple Picture

Simple Picture

Radion Couplings

arXiv:0705.3844 [hep-ph] (Csaki JH and Lee)

Both SM and Hidden sector couple with TeV scale strength to RS gravity

There are many couplings relevant for phenomenology

$r B^{(0)\mu} \partial_{\mu} B_5$	$1.09 \frac{M_1}{\kappa \Lambda_r}$	$\hat{h}^{\mu\nu}_{(1)}B^{(1)}_{\mu}\partial_{\nu}B_{5}$	$-0.134 \frac{M_1}{\kappa \Lambda_1}$	$\hat{h}^{\mu\nu}_{(2)}B^{(1)}_{\mu}\partial_{\nu}B_{5}$	$.099 \frac{M_1}{\kappa} \Lambda_2$
$rB^{(1)}_{\mu}B^{(1)\mu}$	$\frac{4}{3} \frac{M_1^2}{2\kappa \Lambda_r}$	$\hat{h}^{\mu\nu}_{(1)}B^{(1)}_{\mu}B^{(1)}_{\nu}$	$137 \frac{M_{1}^{2}}{2\kappa\Lambda_{1}}$	$\hat{h}^{\mu\nu}_{(2)}B^{(1)}_{\mu}B^{(1)}_{\nu}$	$.050 rac{M_1^2}{2\kappa\Lambda_2}$
$rB^{(1)}_{\mu\rho}B^{(1)\mu\rho}$	$\frac{1}{3}\frac{1}{2\kappa\Lambda_r}$	$\hat{h}^{\mu\nu}_{(1)}B^{(1)}_{\mu\rho}B^{(1)\rho}_{\nu}$	$.137\frac{1}{2\kappa\Lambda_1}$	$\hat{h}^{\mu\nu}_{(2)}B^{(1)}_{\mu\rho}B^{(1)\rho}_{\nu}$	$.053\frac{1}{2\kappa\Lambda_2}$
$r(\partial_{\mu}B_5)^2$	$2\frac{1}{2\kappa\Lambda_r}$	$\hat{h}^{\mu\nu}_{(1)}\partial_{\mu}B_5\partial_{\nu}B_5$	$219\frac{1}{2\kappa\Lambda_{1}}$	$\hat{h}^{\mu\nu}_{(2)}\partial_{\mu}B_5\partial_{\nu}B_5$	$.049\frac{1}{2\kappa\Lambda_2}$

Couplings of RS gravity to SM fields:

A. L. Fitzpatrick, J. Kaplan, L. Randall and L. T. Wang, JHEP 0709, 013 (2007) [arXiv:hep-ph/0701150].
K. Agashe, H. Davoudiasl, G. Perez and A. Soni, Phys. Rev. D 76, 036006 (2007) [arXiv:hep-ph/0701186].

(our results conform to this previous work in relevant limits)

Accessible Hidden Sector Phenomenology

At colliders – without hidden sector, radion production and decays are very similar to a SM Higgs

new decay mode of the radion:

 $gg \to r \to B_5 B_5$

dominates width for light
 (< 160 GeV) radions

20% of width for higher mass radions

Weak Coupling: Displaced vertices!

for small gauge coupling (1/f_{eff}), B₅ can have collider-scale time of flight:

$$\Delta x = 58 \text{cm} \left(\frac{f_{\text{eff}}}{10^6 \text{GeV}}\right)^2 \left(\frac{10 \text{GeV}}{m_{B_5}}\right) \sqrt{\left(\frac{E}{m_{B_5}}\right)^2 - 1}$$

What might such a hidden sector be doing?

The light scalar field most prominently discussed in the literature is the axion

See Talk by Don Bunk in this session

Conclusions

RS models are natural candidates for Hidden Valley theories

- RS gravity automatically and unavoidably bridges between SM and hidden RS gauge sectors
- Such hidden sectors can dramatically change the phenomenology of RS gravity (non-standard radion decays which may lead to very non-standard Higgs decays)
- Such a hidden sector may be responsible for resolving issues with the SM (strong CP – Don Bunk)

such models predict new processes relevant for collider pheno of RS gravity (displaced vertices – LHCb)