Warped Penguins

Tunsin Tsai

Based on arXiv:1004.2037
In collaboration with Csaba Csáki, Yuval Grossman, Flip Tanedo

PHENO 10

The Penguins

- Penguin Diagrams are loop-induced processes.
- We focus on $\mu \rightarrow e \gamma$,

References

FCNC in RS

R.Kitano (00);S.J. Huber (03); K.Agashe, G.Perez, A.Soni (04)(05);
G.Moreau, K.Agashe, A.E.Belchman, F. Petriello (06); J.I.Silva-Marcos (06); A.L. Fitzpatrick, L.Randall, G.Perez (08); K. Agashe, A. Azatov, and L. Zhu (09)...

Feynman Rules in 5D

L.Randall, M. D. Schwartz (01); M. Puchwein, Z. Kunszt (04); R. Catino, A. Pomarol (04)...

Reduceing the Flavor Constraints

J. Santiago (08); M. Blanke, A. J. Buras, B. Duling, S. Gori, A. Weiler (09); A.
J. Buras, B. Duling, and S. Gori (09); M. E. Albrecht, M. Blanke, A. J. Buras,
B. Duling, K. Gemmler (09); K. Agashe (09); C. Csaki, C. Delaunay, C.

Grojean, Y. Grossman (09)...

Problem: $\mu \rightarrow e \gamma$ in RS is divergent!?

Previous Analyses $\mu \rightarrow e \gamma$ with brane higgs loop is UV sensitive!

- Tree-level process: $\mathcal{M}_{\text {tree }}+\mathcal{M}_{\text {loop }}\left(\Lambda_{c}\right)$.
- Loop-induced process: $\mathcal{M}_{\text {loop }}\left(\Lambda_{c}\right)+\ldots$.
- Cannot get a physical result.

Problem: $\mu \rightarrow$ e γ in RS is divergent!?

We Claim

One loop $\mu \rightarrow \boldsymbol{e} \gamma$ in RS is finite!

- Can get a physical result for the amplitude.
- Gives interesting bounds on Yukawa.

The divergence in the KK picture

Naive NDA		KK	SM
Loop Integral	$\left(\sum\right) d^{4} k$	5	4
Fermi-Propg	$(1 / k)^{2}$	-2	-2
Higgs-Propg	$(1 / k)^{2}$	-2	-2
Gauge Symm	$\left(k / k^{2}\right) \rightarrow\left(p / k^{2}\right)$	-1	-1
k-Power	0	-1	

Hard to see the finiteness in KK!

- Infinitely large mass matrix including the KK-towers.
- Complications from summing the KK-modes.

The divergence in the KK picture

Naive NDA		KK	SM
Loop Integral	$\left(\sum\right) d^{4} k$	5	4
Fermi-Propg	$(1 / k)^{2}$	-2	-2
Higgs-Propg	$(1 / k)^{2}$	-2	-2
Gauge Symm	$\left(k / k^{2}\right) \rightarrow\left(p / k^{2}\right)$	-1	-1

Yukawa	$y \propto M_{i}^{-1}$	-1	-1
k-Power	-1	-2	

Hard to see the finiteness in KK!

- Infinitely large mass matrix including the KK-towers.
- Complications from summing the KK-modes.

The divergence in the KK picture

Naive NDA		KK	SM
Loop Integral	$\left(\sum\right) d^{4} k$	5	4
Fermi-Propg	$(1 / k)^{2}$	-2	-2
Higgs-Propg	$(1 / k)^{2}$	-2	-2
Gauge Symm	$\left(k / k^{2}\right) \rightarrow\left(\phi p / k^{2}\right)$	-1	-1

Yukawa	$y \propto M_{i}^{-1}$	-1	-1
k-Power	-1	-2	

Show the finiteness with a full 5D calculation!

- No need to do the KK-sum.
- The only cutoff is the 4D momentum.

Results of the 5D Calculation

Finiteness \& Branching ratio:

- The finiteness comes from the Lorentz invariance \& chiral BC.
- The branching ratio given by the explicit 5D-loop calculation is

$$
\operatorname{Br}(\mu \rightarrow \mathrm{e} \gamma) \simeq 2 \cdot 10^{-7}\left(\frac{3 \mathrm{TeV}}{\mathrm{M}_{\mathrm{KK}}}\right)^{4}\left(\frac{\mathrm{Y}_{*}}{2}\right)^{4}
$$

The Yukawa bounds from FCNC

How to use this result?

$$
\operatorname{Br}(\mu \rightarrow \mathrm{e} \gamma) \simeq 2 \cdot 10^{-7}\left(\frac{3 \mathrm{TeV}}{\mathrm{M}_{\mathrm{KK}}}\right)^{4}\left(\frac{\mathrm{Y}_{*}}{2}\right)^{4}
$$

We can use the flavor bounds on the Yukawa coupling.

Use the branching ratio to constraint the Yukawa

There are two different FCNC processes:

gives a lower bound on Y.

They constraint the Yukawa from both sides!

The Yukawa bounds

Combine the two results
There is a tension between the $\mu \rightarrow \boldsymbol{e} \& \mu \rightarrow \boldsymbol{e} \gamma$ bounds!

For $M_{k k}=3 \mathrm{TeV}$,

$$
Y_{*}(\mu \rightarrow e)>3.7 \quad Y_{*}(\mu \rightarrow e \gamma)<0.2
$$

These flavor bounds are important for model building.

The Yukawa bounds

Combine the two results
There is a tension between the $\mu \rightarrow \boldsymbol{e} \& \mu \rightarrow \boldsymbol{e} \gamma$ bounds!

For $M_{k k}=3 \mathrm{TeV}$,

$$
Y_{*}(\mu \rightarrow e)>3.7 \quad Y_{*}(\mu \rightarrow e \gamma)<0.2
$$

These flavor bounds are important for model building.

To relax the tension: Custodial Symmetry, A_{4} Symmetry, ...

Match the 5D \& KK results.

Finiteness \& Amplitude

Match the 5D \& KK results.

Finiteness \& Amplitude

Match the 5D \& KK results.

Finiteness \& Amplitude

Matching the KK \& 5D results

Calculating the amplitude in KK picture, if we do

$$
\mathcal{M}=\sum_{n=1}^{N} \int_{0}^{\infty} d^{4} k \hat{\mathcal{M}}^{(n)}(k)
$$

the result is different from the 5D result.

Matching the KK \& 5D results

Calculating the amplitude in KK picture, if we do

$$
\mathcal{M}=\sum_{n=1}^{N} \int_{0}^{\infty} d^{4} k \hat{\mathcal{M}}^{(n)}(k)
$$

the result is different from the 5D result.

$5 \mathrm{D} \neq \mathrm{KK}!?$

Matching the KK \& 5D results

The reason is,

Wrong UV limit!

To match the 5D \& KK, the momentum cutoff $\lesssim K K$ cutoff.

One way to do this is

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{0}^{N M_{K K}} d^{4} k \hat{\mathcal{M}}^{(n)}(k)
$$

This gives the same result as in 5D.
$5 D=K K$

Conclusion

- One loop $\mu \rightarrow \boldsymbol{e} \gamma$ in RS is finite.
- A tension between the $\mu \rightarrow e \& \mu \rightarrow e \gamma$ Yukawa bounds.
- The nontrivial UV limit in KK calculation is important for matching the KK \& 5D results.

$\mu \rightarrow e \gamma$ in 5D

The diagrams of $\mu \rightarrow \boldsymbol{e} \gamma$:

- Get the leading order result by doing mass insertions.
- Rotate all the flavor mixing to the Yukawa.
- It is an L-R operator: $a \bar{L} \sigma^{\mu \nu} F_{\mu \nu} E$
- From the gauge symmetry:
$\epsilon_{\mu} \mathcal{M}^{\mu} \sim \epsilon_{\mu} \bar{u}\left(p^{\mu}+p_{e}^{\mu}-\left(m_{\mu}+m_{e}\right) \gamma^{\mu}\right) u$
- To get a, we only need to calculate the coefficient of p^{μ}.

The Result

The result of the amplitude can be written as follows:

$$
a_{k \ell} \times R^{\prime 2} \frac{e}{16 \pi^{2}} \frac{v}{\sqrt{2}}\left(f_{L_{i}} Y_{i k} Y_{k \ell}^{\dagger} Y_{\ell j} f_{-E_{j}}\right) \bar{L}_{i}^{(0)} \sigma^{\mu \nu} E_{j}^{(0)} F_{\mu \nu}^{(0)}
$$

The loop integral gives $a_{k \ell} \simeq 0.5$.

$$
\begin{aligned}
& \operatorname{Br}(\mu \rightarrow e \gamma)_{\text {hhy }}>8.2 \cdot 10^{-7} a^{2}\left(\frac{3 \mathrm{TeV}}{M_{\kappa K}}\right)^{4}\left(\frac{Y_{*}}{2}\right)^{4} \\
& \operatorname{Br}(\mu \rightarrow e \gamma)_{\mathrm{exp}}<1.2 \cdot 10^{-11} \\
& \text { for } M_{k k}=3 \mathrm{TeV} \text {, we have } \\
& \qquad Y_{*}<0.2
\end{aligned}
$$

The fermion propagator in 5D

$$
\left(-\not p+i \gamma^{5} \partial_{5}+m\right) \Delta\left(p, z, z^{\prime}\right)=i \delta\left(z-z^{\prime}\right)
$$

Trick:

$$
\left(p^{2}-\partial_{5}^{2}+m^{2}\right) F\left(p, z, z^{\prime}\right)=i \delta\left(z-z^{\prime}\right)
$$

$$
\Delta\left(p, z, z^{\prime}\right)=\left(p p-i \gamma^{5} \partial_{5}+m\right) F\left(p, z, z^{\prime}\right)
$$

In flat XD case:

$$
F\left(p, z, z^{\prime}\right)=A\left(p, z^{\prime}\right) \cos (p z)+B\left(p, z^{\prime}\right) \sin (p z)
$$

The chiral BC

The chiral BC constraints the form of the amplitude!

How to calculate the 5D loop?

Feynman's trick with Bessel functions?? We don't know that...
However, we can

- Tayler expand the propagator into powers of the external momentum $\left(p^{\mu}, q^{\mu}\right) \cdot \frac{1}{\left(k^{2}+2 k \cdot q\right)}=\frac{1}{k^{2}}\left(1-\frac{2 k \cdot q}{k^{2}}+\ldots\right)$.
- Isolate the p^{μ} terms. Get the coefficient. $\not p \gamma^{\mu}=2 p^{\mu}-\gamma^{\mu} p$.
- Solve the numerical integral, get the coefficient of $\mu \rightarrow \boldsymbol{e} \gamma$.

$$
a \times R^{\prime 2} \frac{e}{16 \pi^{2}} \frac{v}{\sqrt{2}}\left(f_{L} Y Y^{\dagger} Y f_{E}\right) \bar{u} \notin u ; \quad a=\int d x \int d y \text { (scalar function). }
$$

Why is $\mu \rightarrow e \gamma$ finite?

Lorentz invariance + chiral BC gives the finiteness:
The propagators are composed of two parts

- The Dirac operator part (gives the γ^{μ} structure).
- The Bessel function part (contains the 5D profile).

In the UV limit, the photon vertex is pulled back to the IR brane.

- Can just look at the Dirac operator part.

Each loop contains two sectors:

- photon emission
- mass insertion

Why is $\mu \rightarrow e \gamma$ is finite?

- γ emission: Lorentz inv + chiral BC gives $\left(k \gamma^{\mu} k-k^{2} \gamma^{\mu}\right)$
- mass insertion: The chiral BC gives k.
- Combining the two m-insertion amp, the leading order becomes

$$
\mathcal{M}_{(a)}+\mathcal{M}_{(b)} \sim \nless k\left(k \gamma^{\mu} k-k^{2} \gamma^{\mu}\right)+\left(k \gamma^{\mu} k-k^{2} \gamma^{\mu}\right) \nVdash=0
$$

- From NDA, only the leading order term can be divergent.

$$
\mu \rightarrow \boldsymbol{e} \gamma \text { is finite! }
$$

