# Unusual Higgs Decays from Gauge Mediated Supersymmetry Breaking

David Morrissey



with

John Mason and David Poland

PRD80:115015,2009 - hep-ph/0909.3523

Pheno Symposium, May 10, 2010

#### The Big Picture



- $h^0 \to \chi_1^0 \chi_1^0$   $\chi_1^0 \to \tilde{g} \gamma$  promptly in low-scale GMSB
- Three Questions:
  - 1. Is this possible in GMSB?
  - 2. Is it allowed by LEP and Tevatron data?
  - 3. Can we observe it at the Tevatron or the LHC?

# Gauge Mediated SUSY Breaking (GMSB)



$$m_{soft} \sim \frac{g^2}{(4\pi)^2} \frac{F}{M}$$
 (SM superpartners)

$$m_{3/2} \sim \frac{F}{M_{\rm Pl}}$$
 (Gravitino)

• The gravitino is the lightest superpartner (LSP) if

$$M \ll \frac{g^2}{(4\pi)^2} M_{\rm Pl}.$$

Gravitino = mixture of the gravitino and the goldstino.
 Effective Coupling: [Fayet '76]

$$\mathcal{L} \supset \frac{1}{4\sqrt{2}F} \bar{\lambda} \, \gamma^{\alpha} \sigma_{\mu\nu} \, \partial_{\alpha} \tilde{g} \, F^{\mu\nu} + \dots$$

This leads to

$$c au(\chi_1^0 o ilde{g}\gamma) \simeq \frac{48\pi}{c_W^2} \frac{m_{3/2}^2 M_{\text{Pl}}^2}{m_{\chi_1^0}^5}$$

$$\simeq (0.03 \, \text{cm}) \left(\frac{m_{3/2}}{0.6 \, \text{eV}}\right)^2 \left(\frac{50 \, \text{GeV}}{m_{\chi_1^0}}\right)^5$$

DØ ECAL can "point" photons to within 2 cm.
 (CDF does slightly worse.)

# Minimal GMSB Spectra

#### $\Rightarrow N_m$ sets of $5 \oplus \bar{5}$ messengers

ullet Soft masses go like  $g_a^2$ .  $M_1 \sim \sqrt{m_{\widetilde{\ell}_R}^2}$  are the smallest.

Mass Bounds:

Relative Mass 
$$\widetilde{G}, \widetilde{\mathfrak{q}}_{L,R} \sim g_3^2$$
  $\Longrightarrow \widetilde{h}$   $\widetilde{h}$   $2$   $\Longrightarrow \widetilde{g}, \widetilde{l}_L \sim g_2^2$   $\Longrightarrow \widetilde{g}, \widetilde{l}_R \sim g_1^2$ 

$$m_{\chi_1^0} \sim m_{\tilde{\ell}_R} ~\gtrsim~ 100\,{
m GeV}~{
m from~LEP~searches}$$
  $m_{h^0} ~\lesssim~ 135\,{
m GeV}~{
m for}~m_{soft} \lesssim 2\,{
m TeV}$ 

 $\Rightarrow$  can't have  $h^0 \to \chi_1^0 \chi_1^0$  in minimal GMSB

 $(H^0,\,A^0 \to \chi_1^0\chi_1^0 \text{ is possible [Diáz-Cruz,Ghosh,Moretti '03]})$ 

# General Gauge Mediation

[Meade, Seiberg, Shih '08]

• Gaugino Mass Blob:



$$M_a = g_a^2 B_a$$

Scalar Mass Blob:



$$m_i^2 = \sum_{a=1}^3 g_a^4 C_a^i A_a$$

- Basis functions  $\{A_a, B_a\}$  span the possibilities.
- ullet  $M_1$  and  $m_{\widetilde{\ell}_R}^2$  are independent in GGMSB.
  - ⇒ can have a light neutralino and heavier sleptons
  - $\Rightarrow h^0 \rightarrow \chi_1^0 \chi_1^0$  could be possible

## Bounds on a Light Neutralino

• LEP:



$$\sigma(e^+e^- \to \chi_1^0 \chi_1^0 \to \gamma \gamma + E_T) < 10fb$$
  
 $BR(Z^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma + E_T) < 3 \times 10^{-6}$ 

• Tevatron:



$$\sigma_{tot}(par{p} 
ightarrow \chi_i^{0,\pm} \chi_j^{0,\mp} 
ightarrow X + \gamma \gamma + E_T) < 20\,fb$$
 [CDF GMSB]

⇒ need small neutralino couplings to gauge bosons.

#### **GGMSB** Parameter Scans



- $BR(h^0 \to \chi_1^0 \chi_1^0) \simeq 0.15$  is possible. Maximal for small  $\tan \beta$ ,  $|\mu|$ .
- Tevatron bounds limit  $|\mu| \gtrsim 250 \, \text{GeV}$ .

#### Tevatron Higgs Searches

- $BR(h^0 \to \gamma \gamma) \simeq 2 \times 10^{-3}$  in the SM Tevatron searches limit  $(\sigma BR) \lesssim 15 (\sigma BR)_{SM}$ .
- $BR(h^0 \to \chi_1^0 \chi_1^0 \to \gamma \gamma E_T) \simeq 0.15$  is possible. A potential signal?
- Study Sample Point:

$$M_1=$$
 50 GeV,  $\mu=$  300 GeV,  $aneta=$  5.5,  $m_{\tilde{t}}\simeq 2000$  GeV,  $A_t=$  0,  $m_{A^0}=$  1000 GeV.

This is consistent with LEP+Tevatron and gives

$$BR(h^0 \to \chi_1^0 \chi_1^0) \simeq 0.11, \ m_{h^0} \simeq 114.7 \, {\rm GeV}, \ m_{\chi_1^0} \simeq 46.6 \, {\rm GeV}.$$

ullet Tevatron (DØ) search:  $p_T^{\gamma} > 25 \ {
m GeV}$ ,  $|\eta| < 1.1$ 



- This inclusive channel is swamped by background.
- Kinematic End-Point:

$$m_{\gamma\gamma} \leq \frac{2\,m_{\chi_1^0}^2}{m_h - \sqrt{m_h^2 - 4m_{\chi_1^0}^2}}$$

# Tevatron (DØ) GMSB Searches

- ullet Cuts:  $p_T^{\gamma} >$  25 GeV,  $|\eta| < 1.1$ ,  $E_T >$  30, 60 GeV.
- With  $E_T > 30 \,\mathrm{GeV}$ ,

$$S \simeq 2.7/fb^{-1}, \quad B \simeq 10/fb^{-1}$$

- $\Rightarrow S/\sqrt{B} \simeq 3$  with  $10 \, fb^{-1}$  of data
- $\Rightarrow$  better than SM Higgs sensitivity for  $m_h \lesssim 125\,\mathrm{GeV}$
- Could be improved with smarter cuts:



#### LHC Searches

- Use same sample point:  $m_h=114.7, {\rm GeV}, \ m_{\chi_1^0}=46.6 \, {\rm GeV}.$
- Inclusive  $h^0 \to \gamma \gamma$  is swamped by background.
- Exclusive  $(W/Z) h^0 \to \gamma \gamma + n \ell$ :



- ullet CMS Search:  $p_T^{\gamma}=$  35, 20 GeV,  $|\eta|<$  2.5,  $N_{\ell}\geq 1$ , ...
- With 20 GeV  $< m_{\gamma\gamma} <$  90 GeV we find (after cuts)

$$S \simeq 7 \, fb, \, B \simeq 28 \, fb \quad \Rightarrow S/\sqrt{B} \simeq 1.26 \quad \text{with } 1 \, fb^{-1}.$$

 $\Rightarrow$  discovery with about  $16 fb^{-1}$  of data

# Summary

•  $h^0 \to \chi_1^0 \chi_1^0$  with  $\chi_1^0 \to \gamma \, \tilde{g}$  promptly.



- This does not occur in minimal MSSM GMSB.
   It is possible in generalized GMSB scenarios.
- Might be visible at the Tevatron and the LHC.

# Extra Slides

#### Neutralino Decays to Photons and Gravitinos

- Gravitino = mixture of the gravitino and the goldstino.
- Goldstino Equivalence Theorem: [Fayet '76] "longitudinal" s=1/2 goldstino components couple as 1/F "transverse" s=3/2 SUGRA components couple as  $1/M_{\rm Pl}^2$
- Effective Goldstino Coupling:

$$\mathcal{L} \supset \frac{1}{4\sqrt{2}F} \bar{\lambda} \gamma^{\alpha} \sigma_{\mu\nu} \, \partial_{\alpha} \tilde{g} \, F^{\mu\nu} + \dots$$

• This leads to

$$c au(\chi_1^0 o ilde{g}\gamma) \simeq rac{48\pi}{c_W^2} rac{m_{3/2}^2 \, M_{
m Pl}^2}{m_{\chi_1^0}^5},$$

•  $m_{3/2} \simeq 0.6 \, \mathrm{eV} \, (F \simeq 50 \, \mathrm{TeV})$  gives "prompt" decays:



•  $D\emptyset$  ECAL can "point" photons to within 2cm. (CDF does slightly worse.)

## Higgs Decays to Neutralinos

• LEP+Tevatron  $\Rightarrow$  light neutralino must be mostly Bino:  $\tilde{B}^0$  doesn't couple directly to gauge bosons,  $\tilde{H}_u, \, \tilde{H}_d, \, \tilde{W}^3$  do couple directly.

$$\chi_1^0 \simeq \tilde{B}^0 - \epsilon \tilde{H}, \quad \text{with} \quad \epsilon \sim s_\beta c_\beta \left( \frac{v}{\mu} \right)$$

Higgs-neutralino couplings come from

$$-\mathcal{L} \supset \pm \frac{1}{\sqrt{2}} g_Y \, \tilde{B}_0 \tilde{H}_i \, H_i^0$$

- $W^{\pm}/Z^0 \, \chi_1^0 \chi_1^0$  coupling  $\propto \epsilon^2$
- $h^0 \chi_1^0 \chi_1^0$  coupling  $\propto \epsilon$ 
  - $\Rightarrow h^0 \to \chi_1^0 \chi_1^0$  can compete with  $h^0 \to b\bar{b}$



#### LHC Inclusive Diphotons

ullet ATLAS Inclusive Higgs:  $p_T^{\gamma} >$  40, 25 GeV,  $|\eta| <$  2.5



ullet Requiring 60 GeV  $< m_{\gamma\gamma} < 90^{m}$  GeV gives

$$S/\sqrt{B} = 1.1$$
 with  $1 fb^{-1}$   $(S/B \sim 5 \times 10^{-4})$ 

 $\Rightarrow$  20  $fb^{-1}$  needed for discovery (but systematics . . . )

Exclusive 
$$(W/Z) h^0 \rightarrow \gamma \gamma + n \ell$$



- ullet Requiring a lepton from the W/Z makes this channel clean.
- CMS Search:  $p_T^{\gamma} = 35$ , 20 GeV,  $|\eta| < 2.5$ ,  $N_{\ell} \ge 1$ , ...
- $\bullet$  With 20 GeV  $< m_{\gamma\gamma} <$  90 GeV we find (after cuts)

$$S \simeq 7 \, fb, \, B \simeq 28 \, fb \quad \Rightarrow S/\sqrt{B} \simeq 1.26 \quad \text{with } 1 \, fb^{-1}.$$

 $\Rightarrow$  discovery with about  $16 fb^{-1}$  of data