Testing the Supersymmetric Coupling Relations with Monojets at the LHC

Sebastian Grab

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

2010 Phenomenology Symposium Madison, May 10-12, 2010

in collaboration with *B. Allanach* and *H. Haber*

Outline

Introduction

- Measuring SUSY Coupling Relations
- Monojets in the MSSM

2 Reconstruction of the $\tilde{\chi}_1^0$ - \tilde{q} -q Coupling

- Bino LSP Scenarios
- Wino LSP Scenarios

3 Summary and Outlook

Introduction Measuring SUSY Coupling Relations

SUSY Discovery Potential with $\sqrt{S} = 7$ TeV.

[Baer, Barger, Lessa and Tata, arXiv:1004.3594 [hep-ph]]

 \Rightarrow Discovery of new physics might be around the corner!

Sebastian Grab (SCIPP)

How do we know that new physics is SUSY?

Test of Supersymmetric Coupling Relations

Supersymmetry predicts:

 $g_i(V_i f f') = \hat{g}_i(\tilde{V}_i f \tilde{f}')$

Proposed analysis:

Linear Collider

- $\hat{g}(\tilde{W}\tilde{\nu}_{e}e)$ via $e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ or $\tilde{\nu}_{e}\tilde{\nu}_{e}$. [Feng, Peskin, Murayama, Phys. Rev.D52, 1418, 1995], [Cheng, Feng, Polonsky, Phys. Rev.D57, 152, 1998], [Choi et al., Eur. Phys. J. C14, 535, 2000], [Nojiri, Pierce, Yamada, Phys. Rev.D57, 1539, 1998], [Freitas, Manteuffel, Zerwas, Eur. Phys. J. C40, 435, 2005]
- $\hat{g}(\tilde{B}\tilde{e}_{R}e)$ and $\hat{g}(\tilde{W}\tilde{e}_{L}e)$ via $e^{+}e^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ or $\tilde{e}\tilde{e}$. [Choi et al., Eur. Phys. J. C22, 563, 2001], [Nojiri, Fujii, Tsukamoto, Phys. Rev.D54, 6756, 1996], [Freitas, Manteuffel, Zerwas, Eur. Phys. J. C34, 487, 2004], [Cheng et al., Phys. Rev.D57, 152, 1998], [Nojiri et al., Phys. Rev.D57, 1539, 1998]
- $\hat{g}(\tilde{g}\tilde{q}q)$ via $e^+e^- \rightarrow \tilde{g}\tilde{q}q$. [Brandenburg et. al., Eur. Phys. J. C58, 291, 2008]

Test of Supersymmetric Coupling Relations

LHC

• $\hat{g}(\tilde{g}\tilde{q}_{L}q)$ via $PP \rightarrow \tilde{q}_{L}\tilde{q}_{L}$. [Freitas, Skands, JHEP 0609, 043, 2006], [Freitas, Skands, Spira, Zerwas, JHEP 0707, 025, 2007] • $\hat{g}(\tilde{W}\tilde{q}_{L}q)$ via $PP \rightarrow \tilde{q}_{L}\tilde{q}_{L}^{*}$ with \tilde{W} exchange in t- and u-channel. [Bornhauser, Drees, Dreiner, Kim, Phys. Rev.D80, 095007, 2009] \rightarrow see talk by Sascha Bornhauser.

Another possibility for LHC:

Monojets, *i.e.* one hard jet $+ \not E_T$.

 \Rightarrow allows test of $\hat{g}_1(\tilde{B}\tilde{q}_R q)$ and $\hat{g}_2(\tilde{W}\tilde{q}_L q)$.

Monojets in the MSSM

relevant Feynman diagrams:

main SM backgrounds

• $PP \rightarrow Z(\rightarrow \nu\nu)$ +jet. Can be measured from $Z(\rightarrow \ell^+\ell^-)$ +jet. • $PP \rightarrow W(\rightarrow \ell\nu)$ +jet. Reconstruction of the $\tilde{\chi}_{1}^{0}$ - \tilde{a} -a Coupling Bino LSP Scenarios

Discovery Potential for Bino LSP Scenarios

Assume bino LSP scenario with $m_{\tilde{\chi}_1^0} = 100 \text{ GeV}$ and $m_{\tilde{u}_R} = m_{\tilde{d}_P} = 500 \text{ GeV}$ (other sparticles decoupled).

cuts

- 2nd jet veto if $p_T|_{2nd iet} > 50$ GeV.
- Isolated lepton veto.
- $p_T|_{1st iet} > 200 \text{ GeV}$ and $p_T > 200 \text{ GeV}$.

$$\Rightarrow S/\sqrt{B} = 5.2$$
 for $100 fb^{-1}$ at $\sqrt{S} = 14$ TeV.

 \Rightarrow Monojets only visible in light bino LSP scenarios! Reason: Small cross section.

Can we do better?

Reconstruction of the $\tilde{\chi}_1^0$ - \tilde{q} -q Coupling Wino LSP Scenarios

Monojets in Wino LSP Scenarios

relevant Feynman diagrams:

enhancement (compared to bino LSP) due to

- Larger gauge coupling: $\hat{g}_2(\tilde{W}\tilde{q}'_Lq) \approx 2\hat{g}_1(\tilde{B}\tilde{q}_Rq)$.
- More Processes: $ug \to \tilde{u}_L \tilde{\chi}_1^0$ and $ug \to \tilde{d}_L \tilde{\chi}_1^+$.

Reconstruction of the $\tilde{\chi}_1^0 - \tilde{q} - q$ Coupling Wino LSP Scenarios

Discovery Potential for Wino LSP Scenarios

Assume light wino and light \tilde{u}_L and \tilde{d}_L and 100fb^{-1} at $\sqrt{S} = 14 \text{ TeV}$.

$m_{ ilde{u}_L/ ilde{d}_L}$	$m_{ ilde{\chi}_1^{0/+}}$	$p_T _{1st jet}, p_T$	$\sqrt{\mathrm{S}}/\mathrm{B}$
500 GeV	100 GeV	> 210 GeV	39
500 GeV	300 GeV	$> 160 { m ~GeV}$	9.2
700 GeV	100 GeV	> 330 GeV	16
700 GeV	300 GeV	> 270 GeV	6.9
700 GeV	500 GeV	$> 160 { m ~GeV}$	1.4
900 GeV	100 GeV	> 430 GeV	9.5
900 GeV	300 GeV	> 380 GeV	4.8

 \Rightarrow Monojet signal visible for $m_{\tilde{a}_l}$ up to 1.2 TeV!

Reconstruction of the $\tilde{\chi}_1^0$ - \tilde{q} -q Coupling Wino LSP Scenarios

Reconstruction of the Coupling $\hat{g}_2(W\tilde{q}'_Lq)$

Choose mAMSB scenario with $M_0 = 200$ GeV, $M_{3/2} = 33$ TeV, tan $\beta = 10$, and sgn(μ)=+1.

 $\Rightarrow m_{\tilde{q}_L} \approx 720 \text{ GeV}$ and $m_{\tilde{\chi}_1^0} \approx m_{\tilde{\chi}_1^+} \approx 107 \text{ GeV}.$

error	$\Delta \sigma / \sigma$	$\Delta \hat{g}/\hat{g}$
luminosity	3%	1.5%
PDF uncertainty	17%	8.5%
NNLO corrections	18%	9%
statistics	9%	4.5%
$\Delta ilde{m} = 10 { m GeV}$	8%	4%
SUSY background	10%	5%
	29.4%	14.7%

 $\begin{array}{l} \mbox{Remark: $S/B|_{\rm SUSY}\approx 1$.}\\ \mbox{Main SUSY background: $PP\rightarrow \tilde{\chi}_1\tilde{\chi}_1+jet$ (without \tilde{q}).}\\ \mbox{[Giudice, Han, Wang, Wang, arXiv:1004.4902[hep-ph]]} \end{array}$

Sebastian Grab (SCIPP)

Summary and Outlook

Summary

- New physics consistent with SUSY might be discovered soon!
- How do we know, that it is SUSY?
 → Test of SUSY coupling relations.
- Monojets can test $\tilde{\chi}_1^0$ - \tilde{q} -q coupling.
- Only possible for very light bino LSP scenarios.
- Coupling can be tested at 10% level for wino LSP.

Outlook

• Investigate Wino LSP parameter space.

Test of H⁺-t-b coupling.
 [Bornhauser, Drees, SG, Kim, work in progress]

backup slides

Summary and Outlook

Monojet pT-Distributions for Wino LSP

Note: Parton level cut applied on $Z(\rightarrow \nu\nu)$ +jet sample, *i.e.* $p_T|_{\text{parton}} > 100 \text{ GeV}$.

Sebastian Grab (SCIPP)

Wino Branching Ratios

[Barr et al., hep-ph/0208214]

Number of detached Vertices for $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 + X$ for 100 ${ m fb}^{-1}$

Summary and Outlook

Discovery Reach for mAMSB for 100 ${\rm fb}^{-1}$

