◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Determination of Non-Universal SuperGravity (SUGRA) Models at the Large Hadron Collider

Bhaskar Dutta¹ Teruki Kamon^{1,3} Nikolay Kolev² <u>Abram Krislock</u>¹ Youngdo Oh³

¹Texas A&M University

²University of Regina

³Kyungpook National University

2010 Phenomenology Symposium

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation and Model

Dark Matter, Supersymmetry, and nuSUGRA

LHC Measurement Techniques and nuSUGRA Observables OS-LS, Previous Jet Subtract, Jet + 2τ , Jet + W, M_{eff}

Conclusions

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

Motivation: Dark Matter

WMAP: Dark Matter is 23% of our universe!!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Supersymmetry (SUSY)

Between fermion (spin 1/2) and boson (spin 0 or 1) particles:

SM fermion	SUSY boson	SM boson	SUSY fermion
<i>u</i> , <i>d</i> , <i>s</i>	ũ, <i>ሺ</i> ,ŝ	<i>g</i> , <i>W</i> , <i>Z</i> , <i>γ</i> , <i>h</i>	$ ilde{g}, ilde{\chi}^{0}_{1-4}, ilde{\chi}^{\pm}_{1-2}$

Supersymmetry has a natural Dark Matter candidate: $\tilde{\chi}_1^0!!$

- Stable does not decay.
- Neutral does not interact with light.
- Weakly Interacting right interaction for the amount of Dark Matter we see in the universe today!

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

mSUGRA vs. nuSUGRA

Unified Masses at the Grand Unified Scale: mSUGRA

 m_0 $m_{1/2}$ A_0 $\tan(\beta)$ $\operatorname{sign}(\mu)$

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

mSUGRA vs. nuSUGRA

Unified Masses at the Grand Unified Scale: mSUGRA

 m_0 $m_{1/2}$ A_0 $\tan(\beta)$ $\operatorname{sign}(\mu)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

mSUGRA vs. nuSUGRA

Unified Masses at the Grand Unified Scale: mSUGRA nuSUGRA

 m_0 $m_{1/2}$ A_0 $\tan(\beta)$ $\frac{\operatorname{sign}(\mu)}{\mu(m_H)}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

Base Point

Parameters at the GUT scale:

- $m_0 = 360 \text{ GeV},$ $m_{1/2} = 500 \text{ GeV}, A_0 = 0 \text{ GeV},$ $\tan \beta = 40$
- Non-universal Higgs: *m_H* = 732 GeV (instead of 360 GeV)

nuSUGRAmSUGRA

$\widetilde{\chi}_1^{\pm} \rightarrow$	$\cdot \hspace{0.1 cm} W^{\pm} \widetilde{\chi}_{1}^{0}$	42%	2.4%
	$ u \widetilde{ au}_1$	58%	98%
$\widetilde{\chi}_{2}^{0} \rightarrow$	$\tau \widetilde{\tau}_1$	92%	99%

SUSY masses (in GeV):

ĝ	ŨL ŨR	$ ilde{t}_2 ilde{t}_1$	$ ilde{b}_2 \\ ilde{b}_1$	ẽ∟ ẽ _R	$ ilde{ au}_2 \\ ilde{ au}_1$	${f ilde{\chi}_{4}^{0}} {f ilde{\chi}_{3}^{0}} {f ilde{\chi}_{2}^{0}} {f ilde{\chi}_{1}^{0}}$	$\begin{array}{c} \tilde{\chi}_2^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array}$
				10.1	110	432	400
1161	1114	992 790	989	494	446	317	428
	1076	780	946	407	200	293	292
						199	

LHC Measurement Techniques and nuSUGRA Observables ••••••••

Subtraction Techniques

These Opposite Sign (OS) taus have related momentum.

If I collect all OS taus, I will get related pairs plus random pairs. However, if I collect all Like Sign (LS) taus, I will get only random pairs.

With enough statistics, if I perform the OS - LS subtraction, the random pairs will cancel, and I will be left with only the related pairs.

Motivation and Model

LHC Measurement Techniques and nuSUGRA Observables

Subtraction Techniques

With enough statistics, if I normalize, then perform the Same Jet - Previous Jet subtraction, the random pairs will cancel, and I will be left with only the <u>related</u> pairs. The *W* momentum is <u>related</u> to the momentum of this <u>Same Event Jet</u>.

If I collect all W + Jet pairs, I will get related pairs plus random pairs.

However, if I use Jets from Previous Events, I will get only <u>random</u> pairs.

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Jet + 2τ Decay Chain

This decay chain provides three independent measurements:

LHC Measurement Techniques and nuSUGRA Observables $_{\texttt{OOO}} \bullet_{\texttt{OOO}}$

Conclusions

1 Ξ → 4 Ξ →

3

The Jet + 2τ Decay Chain

This decay chain provides three independent measurements.

1. The two τ invariant mass:

 $m(2\tau) = f_{2\tau}(m_0, m_{1/2}, A_0, \mu(m_H), \tan \beta)$

LHC Measurement Techniques and nuSUGRA Observables $_{\texttt{OOOO}}$

Conclusions

The Jet + 2τ Decay Chain

This decay chain provides three independent measurements.

2. The jet plus two τ invariant mass:

$$m(j+2\tau) = f_{j+2\tau}(m_0, m_{1/2}, \mu(m_H), \tan\beta)$$

E 996

< ∃→

Conclusions

3

The Jet + 2τ Decay Chain

This decay chain provides three independent measurements.

3. The jet plus τ invariant mass:

$$m(j+\tau) = f_{j+\tau}(m_0, m_{1/2}, A_0, \mu(m_H), \tan \beta)$$

LHC Measurement Techniques and nuSUGRA Observables $\circ \circ \circ \circ \circ \circ \circ \circ$

Conclusions

The Jet + W Decay Chain

This decay chain provides one more independent measurement.

4. The jet plus W invariant mass:

 $m(j + W) = f_{j+W}(m_0, m_{1/2}, \mu(m_H), \tan \beta)$

LHC Measurement Techniques and nuSUGRA Observables

Conclusions

The Effective Mass $M_{\rm eff}$

The last observable takes advantage of the fact that all nuSUGRA events have high energy jets from \tilde{q} decays to quarks, and large missing energy from the $\tilde{\chi}_1^0$ leaving the detector.

5. The effective mass:

$$M_{\rm eff} = f_{\rm eff}(m_0, m_{1/2})$$

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Conclusions

Preliminary, Estimated Uncertainties in Model Parameters and Dark Matter Relic Density:

 $m_0 = 359 \pm 10 \text{ GeV}, \ m_{1/2} = 502.5 \pm 2.9 \text{GeV}, \ m_H = 725 \pm 25 \text{GeV}$ $\Omega h^2 = 0.123 \pm 0.087 \Rightarrow 71\% \text{ uncertainty } >> \text{WMAP}$

Also, these preliminary, estimated uncertainties are for a luminosity of 1500fb^{-1} !! Yikes... nuSUGRA is hard! We will need lots of data if Nature chooses this reality.

This work supported in part by DOE grant, DOEd GAANN, NSF REU, and WCU project through the National Research Foundation(NRF) of Korea.

LHC Measurement Techniques and nuSUGRA Observables

Backup Slide: Sideband Subtraction

These Sideband Histogram Bins contain mostly background.

If I fit the background shape and W peak, I can use the background shape to normalize the Sideband signal to the shape of the curve in the W-window. Then a Sideband Subtraction leaves a clean W signal.

Backup Slide: Solving for Model Parameters

Model Parameters may be solved for by using the model to find the functional forms for each of the observables listed above.

For example, here's $M_{\rm eff}$ as a function of $m_{1/2}$. Luckily, for this region of parameter space, $M_{\rm eff}$ does not depend so much on m_0 . So simply inverting this function for $m_{1/2}$ as a function of $M_{\rm eff}$ determines $m_{1/2}$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト