µ→e in R-Symmetric Supersymmetry

Ricky Fok University of Oregon

Fok, Kribs arXiv:1004.0556

05/10/2010 @ Pheno 10

Introduction MSSM flavor problem

Slepton / squark generation mixings suppressed

- $\delta_{ij} \equiv m_{ij}^2/m^2 \ll 1$ for many squark and slepton mass matrices
- One solution
 - Enlarging the R-parity!!

Introduction M₁SSM R

- "R" = R-symmetric
 - Z_2 R-parity \rightarrow U(1) R-symmetry
 - Details, see KPW

Kribs, Poppitz, and Weiner arXiv:0712.2039

MRSSM Gaugino/Higgsino masses SUSY particles R-charged, SM particles R-neutral *mB̃B*, μH̃_uH̃_d...etc, forbidden by U(1)_R 1 B̃

 $\begin{array}{c|c} \mathbf{O} & B_{\mu} & h_{u} & h_{d} \\ \hline \mathbf{-1} & \widetilde{H}_{u} & \widetilde{H}_{d} \end{array}$

- Introduce new chiral superfields
 - $\widetilde{M}W_{B}$, $\mu_{u}\widetilde{H}_{u}\psi_{Hu}$, $\mu_{d}\widetilde{H}_{d}\psi_{Hd}$ allowed
 - **B** Dirac inos $N_{\tilde{B}} = \begin{pmatrix} \psi_B \\ \tilde{B}^{\dagger} \end{pmatrix}, \quad N_{H_d} = \begin{pmatrix} \tilde{H}_d^0 \\ \psi_{H_d}^{\dagger} \end{pmatrix}$
 - Two higgsino masses, μ_u and μ_d

MRSSM Lepton flavor violation

Forbidden in MRSSM Allowed in MSSM

• $\delta_{LR} = 0$ by R-symmetry

• $\delta_{\text{RR,LL}} \sim 1$ possible

Exists in MRSSM!

Kribs, Poppitz, and Weiner arXiv:0712.2039

What's new?

- KPW assumed
 - Mass insertion
 - No Higgsinos
 - $\mu \rightarrow e\gamma$ only
- FK
 - Mass eigenstates
 - Higgsinos
 - $\mu \rightarrow e$ conversion, $\mu \rightarrow 3e$

Fok, Kribs arXiv:1004.0556

Outline

- Parameters
 - Mixing angles
 - Mass hierachy
- Flavor violating processes
 - $\mu \rightarrow e\gamma$, $\mu \rightarrow e$ conversion in gold, $\mu \rightarrow 3e$
- Exclusion Plots from Experimental Bounds

Mixing angles

LR slepton mixing forbidden by R-symmetry

3x3 mixing matrix for each slepton "chirality"

• $\mu \rightarrow e \text{ processes}$

• Two generation mixing $c_{L,R} = cos\theta_{L,R}$ $s_{L,R} = sin\theta_{L,R}$ mixing parameter $sin 2\theta_{L,R}$

Mass hierarchy

- W O(TeV) To avoid $\Delta \rho$ being too big

H_u gives negligible contribution

■ BR < 1.2 x 10⁻¹¹ -----

- Insensitive to $tan\beta$
- Amplitude proportional to sin $2\theta_L$

M. Ahmed et al. [MEGA Collaboration], Phys.Rev. D 65, 112002 (2002)

arXiv:hep-ex/0111030

J. Adam et al. [MEG Collaboration], arXiv:0908.2594 [hep-ex]

$\mu \rightarrow e$ conversion in gold

W.H. Bertl et al. [SINDRUM II Collaboration], Eur. Phys. J. C **47**,337 (2006)

- Muon beam -> Fixed gold target
- Normalized rate $< 7.0 \times 10^{-13}$
- Again insensitive to $tan\beta$

 μ

- Same types of diagrams in $\mu \rightarrow e$ conversion.
- Weaker than the combined constraints from $\mu \rightarrow e\gamma$, $\mu \rightarrow e$ conversion.

For details, see Fok, Kribs hep-ph/arXiv:1004.0556

Combined exclusion plots Masses in GeV

Conclusion!

- Maximal RH sleptons mixing ruled out by $\mu \rightarrow e$ conversion
- Order one µ-e LFV possible with LH slepton mixing for sub-TeV non-degenerate sleptons
- Project X @ Fermilab can constrain *sin* $2\theta_{L,R}$ down to ~10⁻³ from $\mu \rightarrow e$ conversion

Project X and the Science of the Intensity Frontier, white paper, Fermilab, 2010. http://www.fnal.gov/pub/projectx/pdfs/ProjectXwhitepaperJan.v2.pdf

$\mu \rightarrow e\gamma$ Exclusion plots

BR < 1.2×10^{-11} MEGA, MEG

Fok,

Kribs

$(\mu \rightarrow e)_{Au}$ Exclusion plots

$BR < 7.0 \times 10^{-13}$ SINDRUM II

Fok,

Kribs

$\mu \rightarrow 3e$ Exclusion plots

$BR < 1.0 \times 10^{-12}$ SINDRUM

LR slepton mixing

- Chiral superfields QUDLE have R charge +1, H_u and H_d have R charge 0.
- Yukawa in superpotential
 - $y_d E^c H_d L$ gives $\tilde{f_R}^* \tilde{H}_d f_L$ and $f_R^\dagger \tilde{H}_d \tilde{f}_L$
 - \tilde{f}_L and \tilde{f}_R^* have the same R-charge (+1)
 - LF mixing term $\tilde{f}_R^*(M^2_{LR})\tilde{f}_L$ forbidden