Constraints on Dark Matter Annihilation

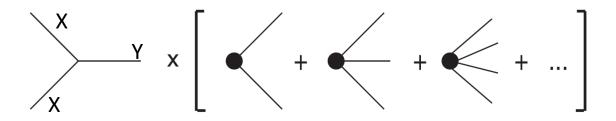
Mihailo Backovic University of Kansas

Dark Matter Annihilation –Early Universe

- For *constant* velocity averaged cross sections relic abundance predicts: $\langle \sigma v \rangle = 3 \times 10^{-26} cm^3/s$
- In general, cross sections are more complicated:
 - Higher order corrections are dependent on the energy! (think infra-red divergences for example)
 - Breit-Wigners have non-trivial energy dependence.
- More interesting relic abundance inspired relations possible.
- Let's look at s-channel annihilation

...

S-channel annihilation cross section



By the Optical Theorem:

$$\sigma = -\frac{1}{2kE_{CM}}Im(\frac{g_{XXY}^2 t_{jj'}}{s - m_Y^2 + im_Y \Gamma_Y}) = \frac{g_{XXY}^2}{2kE_{CM}}\frac{m_Y \Gamma_Y t_{jj'}}{(s - m_Y^2)^2 + m_Y^2 \Gamma_Y^2}. \quad t_{jj'} \approx 4m_X^2 C_{jj'}$$

Includes propagator corrections to ALL ORDERS in pert. theory
Includes ALL POSSIBLE number or type of final states
We consider ALL types of initial states.

Relic calculation non-trivial analytically! Recall: it includes integration over all energies and the entire thermal history of the universe! Also, multiple scale problem!

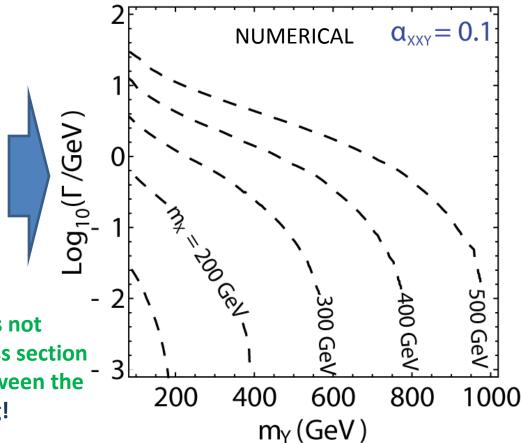
<u>Y</u> Relic abundance predicts NEW masswidth relations for $m_Y \leq 2m_X$

• We are interested in the relations between parameters ($m_X, m_Y, \Gamma_Y, \alpha, ...$)

$$\alpha_{XXY} \equiv g_{XXY}^2 / 4\pi$$

1. For a given m_X and α_{XXY} $\Omega_{\rm DM}h^2 \simeq 0.1$ produces a unique curve in the (m_Y, Γ_Y) space. (Black dashed line - numerical)

> Constant relic abundance does not give you a number for the cross section - It gives you a relationship between the parameters . More challenging!



A formula is worth a 1000 numerical calculations

Υ

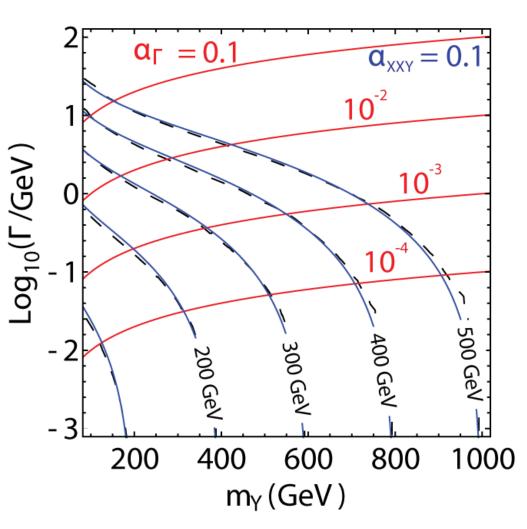
- Analytic s-channel relic calculation complicated!
- Good approximation possible!

$$\Gamma_{Y}(m_{Y}) = \frac{\sqrt{6}}{C_{jj'}\alpha_{XXY}}(2.61 \times 10^{-9} GeV^{-2})$$

$$\times m_{X}^{3} \left(1 + \frac{m_{X}}{2m_{Y}}\right) \left(1 - \frac{m_{Y}}{2m_{X}}\right)^{2}$$
Replaces $\langle \sigma v \rangle = 3 \times 10^{-26} cm^{3}/s$
The approximation relates all 5 parameters of the problem!
No need for further numerical calculations!
No need for further numerical calculations!
Hardware contracts and the problem is the

Calculable widths and immediate results

Widths as calculable features



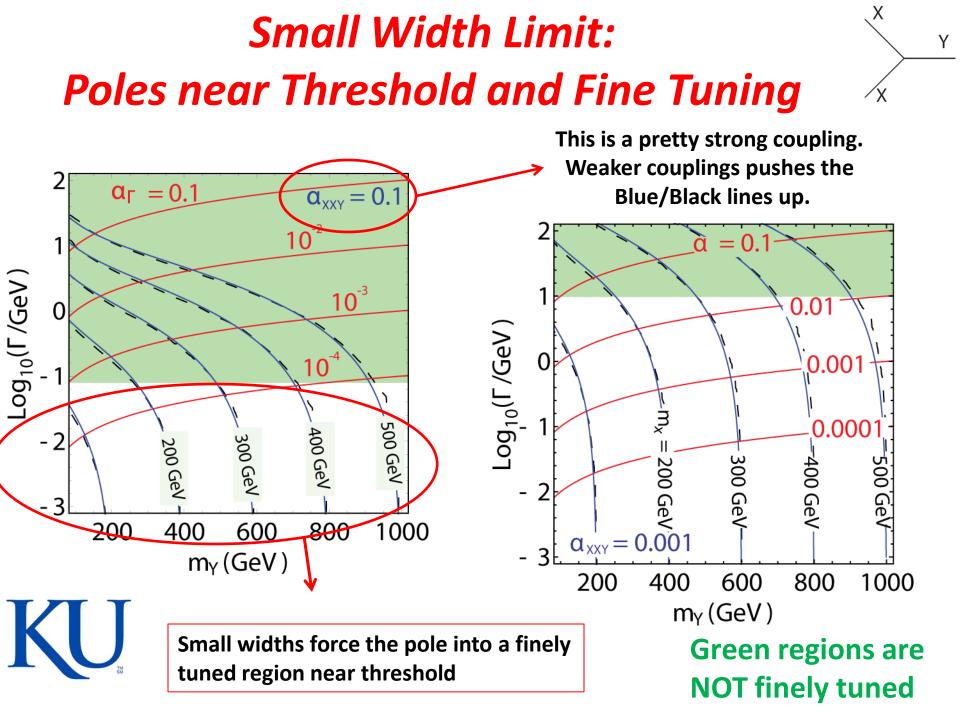
Let:
$$\Gamma_Y = m_Y \alpha_{\Gamma}$$

Allows to
consider many Couplings,
models at once kinematics, etc.

Consistency occurs at the intersection of red lines with lines representing constant relic abundance.

Х

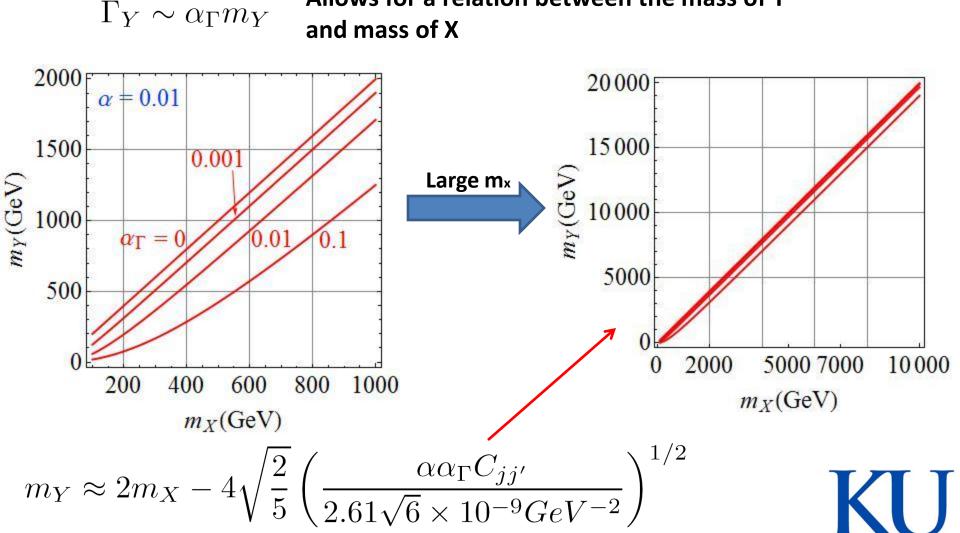
Υ



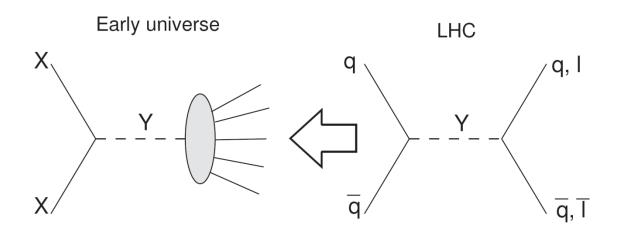
Heavy Dark Matter Limit Another New Fine Tuning Problem

Allows for a relation between the mass of Y

Υ



Example: Z' search at the LHC



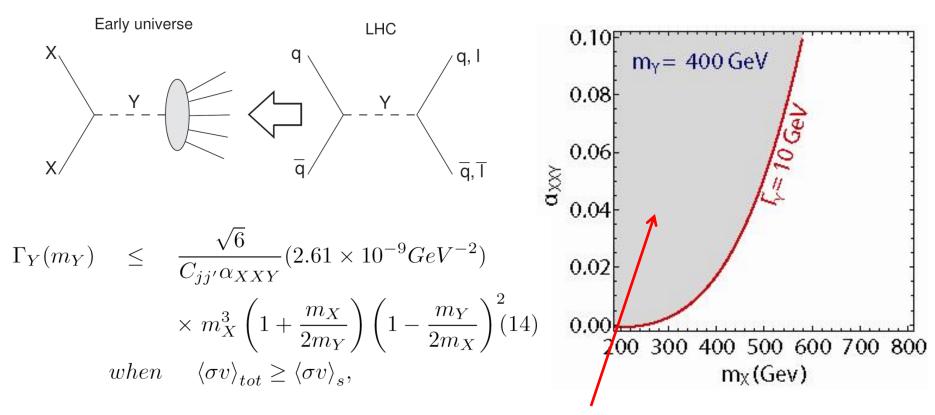
Could Y (LHC) be the Y(DM)? Consistent param. regions?

$$\Gamma_{Y}(m_{Y}) = \frac{\sqrt{6}}{C_{jj'}\alpha_{XXY}} (2.61 \times 10^{-9} GeV^{-2}) \qquad ... if dark matter dominantly \\ \times m_{X}^{3} \left(1 + \frac{m_{X}}{2m_{Y}}\right) \left(1 - \frac{m_{Y}}{2m_{X}}\right)^{2} \qquad annihilated into Y$$
No Numerical Calculation

Necessary!

Example: Z' search at the LHC

- What if more DM annihilation channels contribute?
- Assume no large destructive interference terms.



Shaded region to the left of the curve is not allowed Half of parameter space cut off with no need for parameter space search.

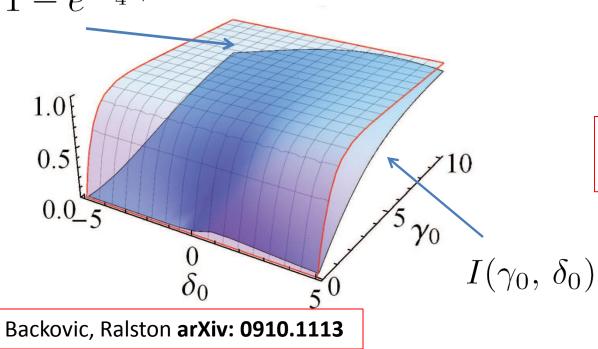
Indirect Detection (Backup slides)

Upper limits on s-channel annihilation in the halo

• Useful parameterization (wrt. the energy scale of the halo): $\gamma_0 = \frac{\Gamma}{2E_0}; \quad \delta_0 = \frac{E_{res}}{E_0}.$

 $I(\delta_0, \gamma_0) \le 1 - e^{-\frac{\pi}{4}\gamma_0}$

$$\langle \sigma v \rangle \equiv \int dv \, v \, \Phi(v) \, \sigma(\delta_0, \gamma_0) \sim I(\delta_0, \gamma_0) / m_X^2$$



Annihilation through a bound state

Condition for a bound state:

$$\alpha_X \gtrsim \kappa \frac{\mu}{m_X}$$

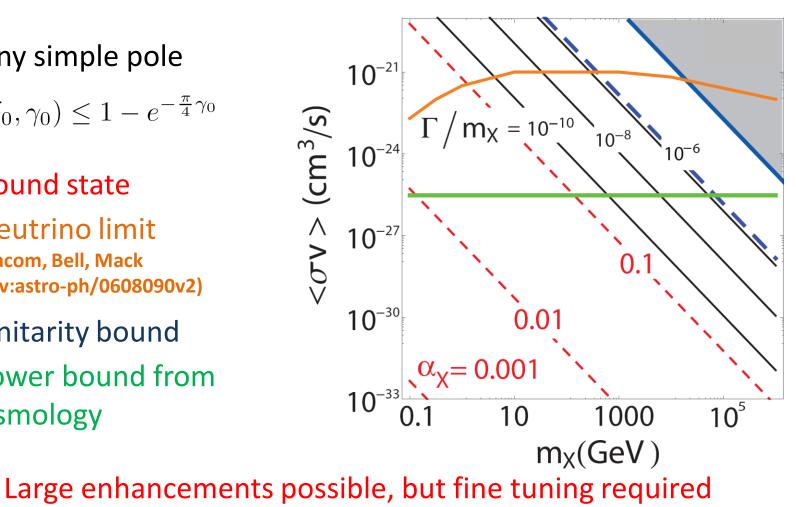
Hydrogen-like bound states will roughly be described by:

$$E_{res} \sim m_X \alpha_X^2$$
 $\Gamma \sim \alpha_X^{4+A} m_X$ A>0

Backovic, Ralston arXiv: 0910.1113

Upper limits on s-channel annihilation in the halo

- Any simple pole
- $I(\delta_0, \gamma_0) \le 1 e^{-\frac{\pi}{4}\gamma_0}$
- Bound state
- •Neutrino limit (Beacom, Bell, Mack arXiv:astro-ph/0608090v2)
- Unitarity bound
- Lower bound from cosmology



to saturate upper limits!

Backovic, Ralston arXiv: 0910.1113

Thank you!