MEASUREMENT OF THE PROMPT DI-PHOTON PRODUCTION CROSS SECTION AT CDF

Costas Vellidis (Fermilab) on behalf of the CDF Collaboration

PHENO 2010
Madison WI, May 11, 2010

Introduction

- $\mathrm{H} \rightarrow \mathrm{yy}$ is main low mass discovery channel at the LHC, can also be examined at the Tevatron
- SM yy production is irreducible background in Higgs search (and in exotics searches such as extra dimensions, SUSY, ...)
- CDF is a great place to measure the yY cross section and check recent theoretical predictions (backgrounds relatively low, detector well understood)
- Last such measurement performed with a small sample of only ~200/pb (D. Acosta et al., Phys. Rev. Lett. 95, 022003 (2005)), now ~5.4/fb available

Experimental environment

$p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

FERMILAB'S ACCELERATOR CHAIN

Tracking:

- Drift chamber $|\eta|<1$ measures charged particle P_{T}
- Silicon tracker allows precision vertex detection $|\eta|<2$
- Calorimeter split in EM and HAD devices $|\eta|<3.6$
- Shower maximum detector in EM cal

- Muon chambers outside calorimeter coverage $|\eta|<1.5$

SM yp production in diagrams

Event selection: kinematic and isolation cuts

Variable	Cut
Leading photon $p_{T 1}$	$\geq 17 \mathrm{GeV} / \mathrm{c}$
Subleading photon $p_{T 2}$	$\geq 15 \mathrm{GeV} / \mathrm{c}$
Photon rapidity $\left\|y_{1,2}\right\|$	≤ 1
Calorimeter isolation E_{T}	$\leq 2 \mathrm{GeV}$
Radius of isolation cone R	0.4

Signal (prompt) and background photons

Background:
$\pi^{0} / \eta^{0} \rightarrow \gamma \gamma$ inside jets

Estimated signal fraction (or purity) in the inclusive photon data using the track isolation:

$$
t r k I S O=\sum_{\text {tracks }}^{r<0.4} P_{T}<1 \mathrm{GeV} / \mathrm{c}
$$

- Immune to multiple interactions \& calorimeter leakage
- Better resolution at low photon E_{T}
- Therefore, smaller systematic uncertainty

Background subtraction method

Define a photon purity in the single photon sample using the track isolation:
$w=\sum_{i=1}^{N_{y}} \frac{\varepsilon_{i}-\varepsilon_{b}}{\varepsilon_{s}-\varepsilon_{b}} \quad$ where $\left\{\begin{array}{c}\varepsilon_{i}=1 \text { if trkISO }<1 \mathrm{GeV} / \mathrm{c} \\ \varepsilon_{i}=0 \text { if trkISO }>1 \mathrm{GeV} / \mathrm{c} \\ \varepsilon_{s}=\text { signal efficiency for trkISO }<1 \mathrm{GeV} / \mathrm{c} \\ \varepsilon_{b}=\text { background efficiency for trkISO }<1 \mathrm{GeV} / \mathrm{c}\end{array}\right\}$
and extend the definition to diphoton events, fully accounting for yy correlations, by solving a system of 4 equations for the numbers of events with signal (γ) or background (b) photons passing (p) or failing (f) the track isolation cut:

$$
\left(\begin{array}{c}
N_{f f} \\
N_{f p} \\
N_{p f} \\
N_{p p}
\end{array}\right)=\left(\begin{array}{cccc}
\left(1-\epsilon_{b 1}\right)\left(1-\epsilon_{b 2}\right) & \left(1-\epsilon_{b 1}\right)\left(1-\epsilon_{\gamma 2}\right) & \left(1-\epsilon_{\gamma 1}\right)\left(1-\epsilon_{b 2}\right) & \left(1-\epsilon_{\gamma 1}\right)\left(1-\epsilon_{\gamma 2}\right) \\
\left(1-\epsilon_{b 1}\right) \epsilon_{b 2} & \left(1-\epsilon_{b 1}\right) \epsilon_{\gamma 2} & \left(1-\epsilon_{\gamma 1}\right) \epsilon_{b 2} & \left(1-\epsilon_{\gamma 1}\right) \epsilon_{\gamma 2} \\
\epsilon_{b 1}\left(1-\epsilon_{b 2}\right) & \epsilon_{b 1}\left(1-\epsilon_{\gamma 2}\right) & \epsilon_{\gamma 1}\left(1-\epsilon_{b 2}\right) & \epsilon_{\gamma 1}\left(1-\epsilon_{\gamma 2}\right) \\
\epsilon_{b 1} \epsilon_{b 2} & \epsilon_{b 1} \epsilon_{\gamma 2} & \epsilon_{\gamma 1} \epsilon_{b 2} & \epsilon_{\gamma 1} \epsilon_{\gamma 2}
\end{array}\right) \times\left(\begin{array}{l}
N_{b b} \\
N_{b \gamma} \\
N_{\gamma b} \\
N_{\gamma \gamma}
\end{array}\right)
$$

Choice of variables for cross section plotting

The fully differential diphoton cross section

$$
\frac{d \sigma}{d M d P_{T} d Y d \cos \theta_{*} d \varphi_{*}}
$$

points to natural selection of kinematic variables:
\checkmark Diphoton mass M, transverse momentum P_{T} and rapidity Y
\checkmark Leading photon spherical polar angles $\left(\cos \theta_{*}, \varphi_{*}\right)$ in the Collins-Soper frame or, alternatively, rapidity Δy \& azimuth $\Delta \varphi$ differences between the 2 photons

Spectra of those variables are examined under 3 different conditions:

- No cut
- For $M<P_{T}$ (enhances fragmentation effects)
\square For $M>P_{T}$ (resembles conditions of heavy particle decay, e.g. Higgs $\rightarrow \mathrm{yY}$)
The measured cross section $\frac{d \sigma}{d X}=\frac{N_{b i n}^{\text {signa }}}{\varepsilon \cdot L \cdot \Delta_{\text {bin }}}$ is plotted against a single
variable X with the other four variables integrated out

Kinematics

$$
\begin{aligned}
& \left|y_{1,2}\right| \leq 1 \Rightarrow|\Delta y \leq 2| \\
& 0 \leq \Delta \varphi \leq \pi \\
& \Delta_{R}=\sqrt{(\Delta y)^{2}+(\Delta \varphi)^{2}} \geq R_{\text {iso }}=0.4 \quad \Rightarrow \quad\left(\vec{p}_{1}, \vec{p}_{2}\right) \geq 20^{0} \\
& M^{2}=2 p_{T 1} p_{T 2}\left(\cosh \Delta_{y}-\cos \Delta \varphi\right) \Rightarrow M \geq R_{i s o} \sqrt{p_{T 1}^{\min } p_{T 2}^{\min }} \cong 6 \mathrm{GeV} / \mathrm{c}^{2} \\
& P_{T}^{2}=p_{T 1}^{2}+p_{T 2}^{2}+2 p_{T 1} p_{T 2} \cos \Delta \varphi \\
& \cos \theta_{*} \approx \tanh \frac{\Delta_{y}}{2} \quad \text { for } \quad P_{T} \rightarrow 0 \& \Delta y \rightarrow 0
\end{aligned}
$$

θ_{*} is the leading photon polar angle in the Collins-Soper frame

Theoretical models compared with the data

> Pythia 6.2.16 LO model including parton showering and realistic underlying event
T. Sjostrand, P. Eden, C. Friberg, L. Lombard, G. Miu, S. Mrenna, E. Norrbin, Comp. Phys. Comm. 15, 28 (2001)
> Diphox 1.2 fixed-order NLO model including 1- and 2-single photon fragmentations
T. Binoth, J. P. Guillet, E. Pilon, M. Werlen, Eur. Phys. J. C16, 11 (2000);
T. Binoth, J. P. Guillet, E. Pilon, M. Werlen, Phys. Rev. D63, 114016 (2001);
L. Bourhis, M. Fontannaz, J. P. Guillet, Eur. Phys. J. C2, 529 (1998) (fragmentations)
> ResBos P_{T} resummed NNLL matched to NLO model
C. Balazs, E. L. Berger, P. Nadolsky, C.-P. Yuan, Phys. Lett. D637, 235 (2006);
C. Balazs, E. L. Berger, P. Nadolsky, C.-P. Yuan, Phys. Rev. D76, 013008 (2007);
C. Balazs, E. L. Berger, P. Nadolsky, C.-P. Yuan, Phys. Rev. D76, 013009 (2007);

The cross section vs. the diphoton mass

(Data - theory)/theory vs. the diphoton mass for Higgs - like kinematics

The cross section vs. the diphoton transverse momentum

(Data - theory)/theory vs. the diphoton transverse momentum

(Data - theory)/theory vs. the diphoton transverse momentum for Higgs - like kinematics

The cross section vs. the diphoton azimuthal distance

(Data - theory)/theory vs. the diphoton azimuthal distance

(Data - theory)/theory vs. the diphoton azimuthal distance for Higgs - like kinematics

Summary \& conclusions

- The yy production cross section is measured using $5.4 \mathrm{fb}^{-1}$ of CDF data using a new background subtraction method, based on the track isolation, which minimizes systematics
- Spectra of several variables examined for various kinematic conditions
- Comparison with LO theory (+initial/final state radiation) shows disagreement with the data
- Comparison with NLO theory (fixed-order or resummed) shows that it does not describe adequately all aspects of the data
- Theory developments could possibly include NNLO terms and double-photon fragmentations (to improve small-angle diphoton spectrum predictions)
- These developments will be important for advanced searches of new physics in the yy channel using all of the event information (e.g. NN, BDT, ...) at the Tevatron and the LHC

