Lifting the Suppression

Electroweak Bremsstrahlung as the Dominant Dark Matter Annihilation Channel

James B. Dent
Arizona State University

N.F.Bell, JBD, T.Jacques, and T.J.Weiler arXiv: I005.xxxx

Outline

Outline

Suppression of dark matter annihilations

Outline

Suppression of dark matter annihilations

 Types of suppression
Outline

Suppression of dark matter annihilations

Types of suppression
Fierz technology

Outline

Suppression of dark matter annihilations
Types of suppression
Fierz technology
Lifting the suppression via radiative corrections

Outline

Suppression of dark matter annihilations
Types of suppression
Fierz technology
Lifting the suppression via radiative corrections
Previous examples from photon bremsstrahlung

Outline

Suppression of dark matter annihilations
Types of suppression
Fierz technology
Lifting the suppression via radiative corrections
Previous examples from photon bremsstrahlung
Electroweak bremsstrahlung

Outline

Suppression of dark matter annihilations
Types of suppression
Fierz technology
Lifting the suppression via radiative corrections
Previous examples from photon bremsstrahlung
Electroweak bremsstrahlung
Implications and further study

Outline

Suppression of dark matter annihilations
Types of suppression
Fierz technology
Lifting the suppression via radiative corrections
Previous examples from photon bremsstrahlung
Electroweak bremsstrahlung
Implications and further study
Leptophilic models

Varieties of Suppression

$$
\chi \chi \rightarrow f \bar{f}
$$

Varieties of Suppression

$$
\chi \chi \rightarrow f \bar{f}
$$

Velocity Suppression

Varieties of Suppression

$$
\chi \chi \rightarrow f \bar{f}
$$

Velocity Suppression

In the non-relativistic limit, partial wave expansion gives that the $L^{\text {th }}$ partial wave is suppressed by $v^{2 L}$.
$L=0$ is an s-wave, $L=I$ is a p-wave, etc... P-wave suppression is considerable in the galactic halo.

Varieties of Suppression

$$
\chi \chi \rightarrow f \bar{f}
$$

Velocity Suppression

In the non-relativistic limit, partial wave expansion gives that the $L^{\text {th }}$ partial wave is suppressed by $v^{2 L}$.
$L=0$ is an s-wave, $L=I$ is a p-wave, etc... P-wave suppression is considerable in the galactic halo.

Helicity Suppression

Varieties of Suppression

$$
\chi \chi \rightarrow f \bar{f}
$$

Velocity Suppression

In the non-relativistic limit, partial wave expansion gives that the $L^{\text {th }}$ partial wave is suppressed by $v^{2 L}$.
$L=0$ is an s-wave, $L=I$ is a p-wave, etc... P-wave suppression is considerable in the galactic halo.

Helicity Suppression

For some fermionic final state currents there arises an additional suppression of m_{f} / m_{χ} in the amplitude, leading to a suppression proportional to $\left(m_{f} / m_{\chi}\right)^{2}$ in the rate

A pair of Majorana particles is even under charge conjugation $C=(-)^{L+S}$

A pair of Majorana particles is even under charge conjugation $C=(-)^{L+S}$

In spectroscopic ${ }^{2 S+1} L_{J}$ and spin-parity notation $J^{P C}$

A pair of Majorana particles is even under charge conjugation $C=(-)^{L+S}$

In spectroscopic ${ }^{2 S+1} L_{J}$ and spin-parity notation $J^{P C}$

$$
\begin{array}{ccc}
{ }^{3} P_{0}\left(0^{++}\right) & \text {Scalar } & \bar{\Psi} \Psi \\
{ }^{1} S_{0}\left(0^{-+}\right) & \text {Pseudoscalar } & \bar{\Psi} i \gamma_{5} \Psi \\
{ }^{3} P_{1}\left(1^{++}\right) & \text {Axial-vector } & \bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi \\
{ }^{3} S_{1}\left(1^{--}\right) & \text {Vector } & \bar{\Psi} \gamma^{\mu} \Psi \\
{ }^{3} D_{1}\left(2^{+-}\right) & \text {Tensor } & \bar{\Psi} \sigma^{\mu \nu} \Psi
\end{array}
$$

A pair of Majorana particles is even under charge conjugation $C=(-)^{L+S}$

In spectroscopic ${ }^{2 S+1} L_{J}$ and spin-parity notation $J^{P C}$

$$
\begin{array}{ccc}
{ }^{3} P_{0}\left(0^{++}\right) & \text {Scalar } & \bar{\Psi} \Psi \\
{ }^{1} S_{0}\left(0^{-+}\right) & \text {Pseudoscalar } & \bar{\Psi} i \gamma_{5} \Psi \\
{ }^{3} P_{1}\left(1^{++}\right) & \text {Axial-vector } & \bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi \\
{ }^{3} S_{1}\left(1^{--}\right) & \text {Vector } & \bar{\Psi} \gamma^{\mu} \Psi \\
{ }^{3} D_{1}\left(2^{+-}\right) & \text {Tensor } & \bar{\Psi} \sigma^{\mu \nu} \Psi
\end{array}
$$

Axial Vector

Axial Vector

The axial-vector is a velocity suppressed $L=1$ mode

Axial Vector

The axial-vector is a velocity suppressed $L=1$ mode

However, the exchange particle is off-shell and will have a time-like pseudoscalar piece which is not velocity suppressed.

Axial Vector

The axial-vector is a velocity suppressed $L=1$ mode However, the exchange particle is off-shell and will have a time-like pseudoscalar piece which is not velocity suppressed.

This will introduce a helicity suppression m_{f} / m_{χ} in the amplitude ${ }^{1}$
' H. Goldberg, Phys.Rev.Lett. 50, I4I9, I983

Fierz Transformations

Fierz Transformations

Fierz Transformations

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \xrightarrow{f\left(p_{3}\right)} \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right)
\end{aligned}
$$

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{ }{ } \begin{array}{l}
f\left(p_{3}\right) \\
\eta
\end{array} \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& \text { S }
\end{aligned}
$$

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{ }{ } \begin{array}{l}
f\left(p_{3}\right) \\
\eta
\end{array} \quad \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& +\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} P_{R} v\left(p_{4}\right) \\
& \text { S } \\
& \text { PS }
\end{aligned}
$$

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{ }{ } \begin{array}{l}
f\left(p_{3}\right) \\
\eta
\end{array} \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad . \quad \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& +\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} P_{R} v\left(p_{4}\right) \\
& \text { PS } \\
& -\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} \gamma_{\mu} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} \gamma^{\mu} P_{R} v\left(p_{4}\right) \quad \text { AV }
\end{aligned}
$$

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{\sim}{f\left(p_{3}\right)} \quad \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad, \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& +\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} P_{R} v\left(p_{4}\right) \\
& \text { PS } \\
& -\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} \gamma_{\mu} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} \gamma^{\mu} P_{R} v\left(p_{4}\right) \quad \text { AV }
\end{aligned}
$$

Fierz Transformations

$$
\begin{aligned}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{\sim}{f\left(p_{3}\right)} \quad \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad, \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& +\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} P_{R} v\left(p_{4}\right) \quad \text { PS } \\
& -\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} \gamma_{\mu} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} \gamma^{\mu} P_{R} v\left(p_{4}\right) \quad \text { AV }
\end{aligned}
$$

Fierz Transformations

$$
\begin{align*}
& \xrightarrow{\chi\left(p_{1}\right)} \underset{\sim}{f\left(p_{3}\right)} \quad \mathcal{M}_{t} \propto \bar{v}\left(p_{2}\right) P_{L} v\left(p_{4}\right) \bar{u}\left(p_{3}\right) P_{R} u\left(p_{1}\right) \\
& \chi\left(p_{2}\right) \quad, \bar{f}\left(p_{4}\right) \quad \text { Using the Fierz transformation } \\
& \left(\bar{v} \Gamma_{1} v\right)\left(\bar{u} \Gamma_{2} u\right)=\frac{1}{4} \Sigma_{A} \Delta_{A}\left(\bar{v} \gamma_{A} u\right)\left(\bar{u} \Gamma_{1} \gamma_{A} \Gamma_{2} v\right) \\
& \rightarrow \frac{1}{4} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} P_{R} v\left(p_{4}\right) \\
& +\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} P_{R} v\left(p_{4}\right) \quad \text { PS } \\
& -\frac{1}{4} \bar{v}\left(p_{2}\right) \gamma^{5} \gamma_{\mu} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) P_{L} \gamma^{5} \gamma^{\mu} P_{R} v\left(p_{4}\right) \quad \text { AV } \\
& \rightarrow 0 \\
& \rightarrow 0
\end{align*}
$$

Photon Brehmsstrahlung

Photon Brehmsstrahlung

Photon Brehmsstrahlung

It has been known for some time that radiative corrections to the dark matter annihilation process can be enormous when compared to the lowest order rate ${ }^{1,2,3,4}$.
'L. Bergstrom, Phys.Lett. B 225, 372 (I989)

${ }^{2}$ R. Flores, K.A. Olive, and S. Rudaz, Phys.Lett. B 232, 377 (1989)
${ }^{3}$ T.Bringmann, L. Bergstrom, and J. Edsjo, JHEP 080 I 049 (2008)
${ }^{4}$ V. Barger, Y.Gao, W.-Y.Keung, and D. Marfatia, Phys.Rev.D 80, 063537 (2009)

Electroweak Brehmsstrahlung

Electroweak Brehmsstrahlung

It has been shown that electroweak bremsstrahlung can have a significant effect on processes which dominantly produce final state leptons ${ }^{1,2}$.
'N.F. Bell, JBD, T.Jacques, and T.J.Weiler, Phys.Rev. D 78083540 (2008)
${ }^{2}$ M. Kachelriess, P.D. Serpico, and M.Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

Electroweak Brehmsstrahlung

It has been shown that electroweak bremsstrahlung can have a significant effect on processes which dominantly produce final state leptons ${ }^{1,2}$.

There it was found that the bremsstrahlung branching ratio may be a considerable fraction of the lowest order process.
'N.F. Bell, JBD, T.Jacques, and T.J.Weiler, Phys.Rev. D 78083540 (2008)
${ }^{2}$ M. Kachelriess, P.D. Serpico, and M.Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

Electroweak Brehmsstrahlung

It has been shown that electroweak bremsstrahlung can have a significant effect on processes which dominantly produce final state leptons ${ }^{1,2}$.

There it was found that the bremsstrahlung branching ratio may be a considerable fraction of the lowest order process.

These studies were done assuming no helicity suppression. We will now investigate these effects in conjuction with the suppressed processes.
'N.F. Bell, JBD, T.Jacques, and T.J.Weiler, Phys.Rev. D 78083540 (2008)
${ }^{2}$ M. Kachelriess, P.D. Serpico, and M.Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

Lifting Suppression in an Example Model

Lifting Suppression in an Example Model

We will examine the leptophilic model ${ }^{1}$

$$
f\left(\nu \eta^{0}-l \eta^{+}\right) \chi+h . c .
$$

Lifting Suppression in an Example Model

We will examine the leptophilic model ${ }^{1}$

$$
f\left(\nu \eta^{0}-l \eta^{+}\right) \chi+h . c .
$$

For Majorana dark matter the cross-section in the massless lepton limit is

$$
\sigma v=\frac{f^{4}\left(r^{2}-2 r^{3}+2 r^{4}\right) v^{2}}{24 m_{\chi}^{2} \pi} \quad \text { where } \quad r=\left(\frac{m_{\chi}^{2}}{m_{\eta}^{2}+m_{\chi}^{2}}\right) .
$$

[^0]
Lifting Suppression in an Example Model

We will examine the leptophilic model ${ }^{1}$

$$
f\left(\nu \eta^{0}-l \eta^{+}\right) \chi+h . c .
$$

For Majorana dark matter the cross-section in the massless lepton limit is

$$
\sigma v=\frac{f^{4}\left(r^{2}-2 r^{3}+2 r^{4}\right) v^{2}}{24 m_{\chi}^{2} \pi} \quad \text { where } \quad r=\left(\frac{m_{\chi}^{2}}{m_{\eta}^{2}+m_{\chi}^{2}}\right) .
$$

We see that the expected velocity suppression arises

[^1]
Lifting the Suppression with W or Z emission

Lifting the Suppression with W or Z emission

Lifting the Suppression with W or Z emission

Contributions to $\chi \chi \rightarrow e^{+} \nu W^{-}$

Applying the Fierz Relations

Applying the Fierz Relations

$$
\mathcal{M}_{t_{1}}=\frac{i g f^{2}}{\sqrt{2 \alpha_{1}^{2}} \frac{1}{t_{1}-m_{n}^{2}}}\left(\bar{v}\left(k_{2}\right) P_{L} v\left(p_{2}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\mu} P_{L} q q_{1} u\left(k_{1}\right)\right) \epsilon_{\mu}^{Q}
$$

Applying the Fierz Relations

$$
\begin{aligned}
& \mathcal{M}_{t_{1}}=\frac{i g f^{2}}{\sqrt{2 q_{1}^{2}} \frac{1}{t_{1}-m_{n}^{2}}}\left(\bar{v}\left(k_{2}\right) P_{L} v\left(p_{2}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\mu} P_{L} q q_{1} u\left(k_{1}\right)\right) \epsilon_{\mu}^{Q} \\
& =\frac{i g f^{2}}{\sqrt{2 q_{1}^{2}} \frac{1}{t_{1}-m_{\eta}^{2}}{ }^{\rho} \varphi_{\mu}^{1}}\left[\left(\bar{v}\left(k_{2}\right) u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{p}\right) P_{L} \mu^{\mu} P_{L} q_{q} v\left(p_{2}\right)\right)\right. \\
& \left.\left.+\left(\bar{v}\left(k_{2}\right)\right)_{5 u} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) P_{L}\right)_{5} \tau^{\mu} P_{L} q_{1} v\left(p_{2}\right)\right) \\
& \left.\left.-\left(\overline{\tilde{v}}\left(k_{2}\right)\right)_{5} \gamma_{\alpha} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\alpha} \gamma^{\mu} P_{L} q_{1}\left(p_{2}\right)\right)\right]
\end{aligned}
$$

Applying the Fierz Relations

$$
\begin{aligned}
& \mathcal{M}_{t_{1}}=\frac{i g f^{2}}{\sqrt{2 \sigma_{1}^{2}} \frac{1}{t_{1}-m_{n}^{s}}}\left(\bar{v}\left(k_{2}\right) P_{L} v\left(p_{2}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\mu} P_{L} q_{i} u\left(k_{1}\right)\right) \epsilon_{\mu}^{Q} \\
& =\frac{i g f^{2}}{\sqrt{2} q_{1}^{2}} \frac{1}{t_{1}-m_{\eta}^{2}} \rho_{\eta}^{\frac{1}{4}} \frac{1}{4}\left[\left(\bar{v}\left(k_{2}\right) u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) P_{L} \lambda^{\mu} P_{L} q_{v}\left(p_{2}\right)\right) \quad S \rightarrow 0\right. \\
& \left.+\left(\bar{v}\left(k_{2}\right)_{5} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) P_{L}\right)_{5} \nu^{\mu} P_{L} q_{1} v\left(p_{2}\right)\right) \quad \text { PS } \rightarrow 0 \\
& \left.-\left(\bar{v}\left(k_{2}\right)_{5} \tau_{\alpha} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\alpha} \gamma^{\mu} P_{L} q_{1}\left(p_{2}\right)\right)\right]
\end{aligned}
$$

Applying the Fierz Relations

$$
\begin{aligned}
\mathcal{M}_{t_{1}}= & \frac{i q f^{2}}{\sqrt{2 q_{1}^{2}} \frac{1}{t_{1}-m_{\eta}^{2}}}\left(\bar{v}\left(k_{2}\right) P_{L} v\left(p_{2}\right)\right)\left(\bar{u}\left(p_{1}\right) \gamma^{\mu} P_{L} q_{1} u\left(k_{1}\right)\right) \epsilon_{\mu}^{Q} \\
= & \frac{i g f^{2}}{\sqrt{2} q_{1}^{2}} \frac{1}{1} \frac{1}{1}-m_{2}^{2} \rho_{\mu}^{1} \frac{1}{4}\left[\left(\bar{v}\left(k_{2}\right) u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) P_{L} \gamma^{\mu} P_{L} q_{1}\left(p_{2}\right)\right) \quad \mathrm{S} \rightarrow 0\right. \\
& \left.+\left(\bar{v}\left(k_{2}\right)\right)_{5} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right) P_{L L} \tau_{5} \gamma^{\mu} P_{L q} q_{1}\left(p_{2}\right)\right) \quad \text { PS } \rightarrow 0 \\
& \left.\left.\left.-\left(\bar{v}\left(k_{2}\right)\right)_{5} \gamma_{\alpha} u\left(k_{1}\right)\right)\left(\bar{u}\left(p_{1}\right)\right)^{\alpha} \gamma^{\mu} P_{L} q_{1} v\left(p_{2}\right)\right)\right] \quad \text { AV } \nrightarrow 0
\end{aligned}
$$

Results

$$
\sigma v\left(\chi \chi \rightarrow e^{+} \nu W^{-}\right) / \sigma v\left(\chi \chi \rightarrow e^{+} e^{-}\right) \text {vs. } m_{\chi}(\mathrm{GeV}) \quad m_{\eta}=10^{10} \mathrm{GeV}
$$

Spectra

$$
M_{\chi}=300 \mathrm{GeV}, M_{\eta}=10^{10} \mathrm{GeV}
$$

Spectra

$$
M_{\chi}=300 \mathrm{GeV}, M_{\eta}=10^{10} \mathrm{GeV}
$$

Conclusions

Conclusions

Fermionic final state products of dark matter annihilation are often hampered by suppression

Conclusions

Fermionic final state products of dark matter annihilation are often hampered by suppression

We have recapitulated under what circumstances these suppressions may arise and how they may be circumvented

Conclusions

Fermionic final state products of dark matter annihilation are often hampered by suppression

We have recapitulated under what circumstances these suppressions may arise and how they may be circumvented

We have demonstrated in an example model that electroweak bremsstrahlung may have dramatic effects on suppressed processes leading to possibly strong constraints on various models

[^0]: ' Q.H. Cao, E. Ma and G. Shaughnessy, Phys.Lett. B 63, I52 (2009)

[^1]: ' Q.H. Cao, E. Ma and G. Shaughnessy, Phys.Lett. B 63, I52 (2009)

