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Varieties of Suppression

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

χχ→ ff̄ (1)
(2)

mf/mχ (3)
(4)

(mf/mχ)2 (5)
(6)
(7)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
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Varieties of Suppression

Velocity Suppression

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

χχ→ ff̄ (1)
(2)

mf/mχ (3)
(4)

(mf/mχ)2 (5)
(6)
(7)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
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Varieties of Suppression

Velocity Suppression
In the non-relativistic limit, partial wave expansion gives that the Lth partial 
wave is suppressed by v2L.  
L = 0 is an s-wave, L = 1 is a p-wave, etc...  P-wave suppression is considerable 
in the galactic halo. 

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

χχ→ ff̄ (1)
(2)

mf/mχ (3)
(4)

(mf/mχ)2 (5)
(6)
(7)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
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Varieties of Suppression

Velocity Suppression

Helicity Suppression

In the non-relativistic limit, partial wave expansion gives that the Lth partial 
wave is suppressed by v2L.  
L = 0 is an s-wave, L = 1 is a p-wave, etc...  P-wave suppression is considerable 
in the galactic halo. 

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

χχ→ ff̄ (1)
(2)

mf/mχ (3)
(4)

(mf/mχ)2 (5)
(6)
(7)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
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Varieties of Suppression

Velocity Suppression

Helicity Suppression

In the non-relativistic limit, partial wave expansion gives that the Lth partial 
wave is suppressed by v2L.  
L = 0 is an s-wave, L = 1 is a p-wave, etc...  P-wave suppression is considerable 
in the galactic halo. 

For some fermionic final state currents there arises an additional 
suppression of  in the amplitude, leading to a suppression                        

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

mf/mχ (1)
(2)

(mf/mχ)2 (3)
(4)
(5)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
anti-protons, and excess generation of anti-protons is not observed by PAMELA, this class of models is ruled out by
the present work.

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

mf/mχ (1)
(2)

(mf/mχ)2 (3)
(4)
(5)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
anti-protons, and excess generation of anti-protons is not observed by PAMELA, this class of models is ruled out by
the present work.

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter

Nicole F. Bell,1 James B. Dent,2 Thomas D. Jacques,1 and Thomas J. Weiler2
1School of Physics, The University of Melbourne, Victoria 3010, Australia

2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
(Dated: April 20, 2010)

DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
rections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z
gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. This is an important result for future DM searches. We discuss the implications
of W/Z-bremsstrahlung for “leptonic” DM models which aim to fit recent cosmic ray positron and
antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

χχ→ ff̄ (1)
(2)

mf/mχ (3)
(4)

(mf/mχ)2 (5)
(6)
(7)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,

proportional to in the rate
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A pair of Majorana particles is even under charge 
conjugation 

Provisional Title: W/Z Bremsstrahlung as the Dominant Annihilation Channel for
Dark Matter
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DM annihilation to leptons, χχ→ l+l−, is necessarily accompanied by electroweak radiative cor-
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matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
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matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
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transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is

mode
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matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is

mode

However, the exchange particle is off-shell and will have a time-like 
pseudoscalar piece which is not velocity suppressed.  
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A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is

mode

However, the exchange particle is off-shell and will have a time-like 
pseudoscalar piece which is not velocity suppressed.  

 This will introduce a helicity suppression  
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gauge bosons decay dominately via hadronic channels, it is thus impossible to produce final state
leptons without an accompanying proton, antiproton, and gamma rays components. Significantly,
while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiat-
ing a massive gauge boson from a final state fermion removes this helicity suppression, such that
the branching ratios Br(lνW ) and Br(l+l−Z) dominate over Br(l+l−). W/Z-bremsstrahlung thus
allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
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antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

mf/mχ (1)
(2)

(mf/mχ)2 (3)
(4)
(5)

I. FOR THIS PAPER

A general appraoch to the strength of the 2 → 2 process χχ → e+e− is the following. Given a model, one Fierz
transforms the amplitudes into an s-channel description of initial state current(s) times final state currents(s).
The process by which this is done is given in Appendix (??). There we re-derive the standard Fierz transformation
matrix, and then derive a Fierz transformation matrix for chiral fields. In addition, and importantly, we present
“higher-order” formulas for Fierz transforming fermion currents which radiate bosons.

There are two main advantages of Fierz transforming to the s-channel. For fermionic dark matter annihilation
models, initial state current is the dark matter current, and the final state current is the charged lepton current.
The dark matter particles (χ’s) move non-relativistically, and so for the dark matter current a partial wave analysis is
valuable. the dark matter current is proportional to vL, where L is the anglular momentum of the initial state partial
wave. Partial waves do not interfere, so rates are proportional to v2L.

As explined in some detail in the Appendix of [? ], the only L = 0 s-waves among the standard set of Dirac bilinears
are those of the pseudoscalar and vector couplings, and of the off-shell zeroth components of the axial-vector and tensor.
What this means is that after Fierz transforming, only the these Dirac bilinears will lead to rates unsuppressed by
v2

χ ∼ 10−6 factors or smaller.
For many charged lepton final state currents, there is a further “helicity suppression” proportional to ml/Mχ in

amplitude, and therefore proortional to (ml/Mχ)2 in rate. For τ+τ− production by annihilating ∼TeV dark matter,
this helicity suppression is also of order 10−6.

Unfortunately, many popular models for annihilation of Majorana dark matter to charged leptons, invented to
accommodate the positron and e+e− excesses observed in PAMELA, Fermi-LAT, and HESS data, are subjsect to one
or more of these two suppressions, the v2 and/or (m"/Mχ)2 suppressions. the point we amke in this work, is that in
this class of models haveing suppressed rates for χχ→ #+#−, the 2→ 3 graph obatined by simply adding a radiative
W or Z to the 2→ 2 graph becomes dominant. Since the radiated W ’s and Z’s will decay to, among other particles,
anti-protons, and excess generation of anti-protons is not observed by PAMELA, this class of models is ruled out by
the present work.

in the amplitude1

1 H. Goldberg,  Phys.Rev.Lett. 50, 1419, 1983
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Fierz Transformations

• I get extra terms from the relations in Eqs.(13,14)

I would think that looking at the time component is the thing to do since,
when squaring out the dark matter part of the amplitude, it is the time-like
part that gives the v0 s-wave term we want. I could then see ū(p3)(γ0p0

3 +
γipi

3 − mf ) = 0 and keeping only the time part and the mass term since the
others have velocities. Then using p0

3 = E =
√

s/2 = mχ to first order in ve-
locity, I can then obtain ū(p3)γµ → ū(p3)γ0 = ū(p3)γ0p0

3/p
0
3 = ū(p3)mf/mχ.

which gives a fermion mass term, but also the dark matter mass in the de-
nominator.
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Using the Fierz transformation

10

A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
this really needs to be integrated into the rest of the Fierz stuff-Thomas

To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:

(Γ1)
b
a(Γ2)

d
c =

1

4

∑

A

∆A(γA)d
a(Γ1γAΓ2)

b
c (67)

Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.

TABLE IV: Gamma Matrices

A γA ∆A

1 ! +1

2,3,4,5 γ0,1,2,3 +1,-1,-1,-1

6,7,8,9,10,11 σ10,20,30,12,23,31 +1,+1,+1,-1,-1,-1

12,13,14,15 γ5γ0,1,2,3 -1,+1,+1,+1

16 γ5 +1

V. MAJORANA DARK MATTER AND HELICITY SUPPRESSION

A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:

C−1

[{

R

L

}

Γ

]

C = ηB

[{

L

R

}

Γ

]T

, again with Γ = ΓB or ΓB , and ηB as before . (72)

For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.
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(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:
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, again with Γ = ΓB or ΓB , and ηB as before . (72)

For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.
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Fierz Transformations

• I get extra terms from the relations in Eqs.(13,14)

I would think that looking at the time component is the thing to do since,
when squaring out the dark matter part of the amplitude, it is the time-like
part that gives the v0 s-wave term we want. I could then see ū(p3)(γ0p0

3 +
γipi

3 − mf ) = 0 and keeping only the time part and the mass term since the
others have velocities. Then using p0

3 = E =
√

s/2 = mχ to first order in ve-
locity, I can then obtain ū(p3)γµ → ū(p3)γ0 = ū(p3)γ0p0

3/p
0
3 = ū(p3)mf/mχ.

which gives a fermion mass term, but also the dark matter mass in the de-
nominator.
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Using the Fierz transformation
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A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
this really needs to be integrated into the rest of the Fierz stuff-Thomas

To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:

(Γ1)
b
a(Γ2)

d
c =

1

4

∑

A

∆A(γA)d
a(Γ1γAΓ2)

b
c (67)

Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.

TABLE IV: Gamma Matrices

A γA ∆A

1 ! +1

2,3,4,5 γ0,1,2,3 +1,-1,-1,-1

6,7,8,9,10,11 σ10,20,30,12,23,31 +1,+1,+1,-1,-1,-1

12,13,14,15 γ5γ0,1,2,3 -1,+1,+1,+1

16 γ5 +1

V. MAJORANA DARK MATTER AND HELICITY SUPPRESSION

A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:
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For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.
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A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
this really needs to be integrated into the rest of the Fierz stuff-Thomas

To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:

(Γ1)
b
a(Γ2)

d
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1

4

∑

A

∆A(γA)d
a(Γ1γAΓ2)

b
c (67)

Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.

TABLE IV: Gamma Matrices

A γA ∆A

1 ! +1

2,3,4,5 γ0,1,2,3 +1,-1,-1,-1

6,7,8,9,10,11 σ10,20,30,12,23,31 +1,+1,+1,-1,-1,-1

12,13,14,15 γ5γ0,1,2,3 -1,+1,+1,+1

16 γ5 +1

V. MAJORANA DARK MATTER AND HELICITY SUPPRESSION

A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:
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, again with Γ = ΓB or ΓB , and ηB as before . (72)
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obtained by interchanging p1 ↔ p2 and s1 ↔ s2.
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5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)

−
1

4
v̄(p2)γ
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v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ
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3 = ū(p3)mf/mχ.

which gives a fermion mass term, but also the dark matter mass in the de-
nominator.

η

f̃L

f̃R

f̃L

χ(p1)

χ(p1)

χ(p1)

χ(p1)

χ(p2)

χ(p2)

χ(p2)

χ(p2)

f(p3)

f(p3)

f(p3)

f(p3)

f̄(p4)

f̄(p4)

f̄(p4)

f̄(p4)

a b

c d

4

Using the Fierz transformation

10

A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
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To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:
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Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.
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A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:

C−1

[{

R

L

}

Γ

]

C = ηB

[{

L

R

}

Γ

]T

, again with Γ = ΓB or ΓB , and ηB as before . (72)

For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

S

PS

AV

2

→ 0 (1)

(2)

! 0 (3)

(4)

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (9)

(10)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (11)

(12)

v0 , v2 (13)

(14)

L = 1 (15)

(16)

χχ → f f̄ (17)

(18)

mf/mχ (19)

(20)

(mf/mχ)2 (21)

(22)

C = (−)L+S (23)

(24)
2S+1LJ (25)

(26)

JPC (27)

(28)
3P0(0

++) (29)

(30)
1S0(0

−+) (31)

(32)
3P1(1

++) (33)

(34)
3S1(1

−−) (35)

(36)
3D1(2

+−) (37)

(38)

Ψ̄Ψ (39)

(40)

Ψ̄iγ5Ψ (41)

(42)

Ψ̄γµγ5Ψ (43)

(44)

Ψ̄iγµΨ (45)

(46)

Ψ̄σµνΨ (47)

2

→ 0 (1)

(2)

! 0 (3)

(4)

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (9)

(10)

Mt ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (11)

(12)

v0 , v2 (13)

(14)

L = 1 (15)

(16)

χχ → f f̄ (17)

(18)

mf/mχ (19)

(20)

(mf/mχ)2 (21)

(22)

C = (−)L+S (23)

(24)
2S+1LJ (25)

(26)

JPC (27)

(28)
3P0(0

++) (29)

(30)
1S0(0

−+) (31)

(32)
3P1(1

++) (33)

(34)
3S1(1

−−) (35)

(36)
3D1(2

+−) (37)

(38)

Ψ̄Ψ (39)

(40)

Ψ̄iγ5Ψ (41)

(42)

Ψ̄γµγ5Ψ (43)

(44)

Ψ̄iγµΨ (45)

(46)

Ψ̄σµνΨ (47)
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Fierz Transformations

• I get extra terms from the relations in Eqs.(13,14)

I would think that looking at the time component is the thing to do since,
when squaring out the dark matter part of the amplitude, it is the time-like
part that gives the v0 s-wave term we want. I could then see ū(p3)(γ0p0

3 +
γipi

3 − mf ) = 0 and keeping only the time part and the mass term since the
others have velocities. Then using p0

3 = E =
√

s/2 = mχ to first order in ve-
locity, I can then obtain ū(p3)γµ → ū(p3)γ0 = ū(p3)γ0p0

3/p
0
3 = ū(p3)mf/mχ.

which gives a fermion mass term, but also the dark matter mass in the de-
nominator.

η

f̃L

f̃R

f̃L

χ(p1)

χ(p1)

χ(p1)

χ(p1)

χ(p2)

χ(p2)

χ(p2)

χ(p2)

f(p3)

f(p3)

f(p3)

f(p3)

f̄(p4)

f̄(p4)

f̄(p4)

f̄(p4)

a b

c d

4

Using the Fierz transformation

10

A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
this really needs to be integrated into the rest of the Fierz stuff-Thomas

To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:

(Γ1)
b
a(Γ2)

d
c =

1

4

∑

A

∆A(γA)d
a(Γ1γAΓ2)

b
c (67)

Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.

TABLE IV: Gamma Matrices

A γA ∆A

1 ! +1

2,3,4,5 γ0,1,2,3 +1,-1,-1,-1

6,7,8,9,10,11 σ10,20,30,12,23,31 +1,+1,+1,-1,-1,-1

12,13,14,15 γ5γ0,1,2,3 -1,+1,+1,+1

16 γ5 +1

V. MAJORANA DARK MATTER AND HELICITY SUPPRESSION

A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:

C−1

[{

R

L

}

Γ

]

C = ηB

[{

L

R

}

Γ

]T

, again with Γ = ΓB or ΓB , and ηB as before . (72)

For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

2

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (1)

(2)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (3)

(4)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (5)

(6)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (7)

(8)

v0 , v2 (9)

(10)

L = 1 (11)

(12)

χχ → f f̄ (13)

(14)

mf/mχ (15)

(16)

(mf/mχ)2 (17)

(18)

C = (−)L+S (19)

(20)
2S+1LJ (21)

(22)

JPC (23)

(24)
3P0(0

++) (25)

(26)
1S0(0

−+) (27)

(28)
3P1(1

++) (29)

(30)
3S1(1

−−) (31)

(32)
3D1(2

+−) (33)

(34)

Ψ̄Ψ (35)

(36)

Ψ̄iγ5Ψ (37)

(38)

Ψ̄γµγ5Ψ (39)

(40)

Ψ̄iγµΨ (41)

(42)

Ψ̄σµνΨ (43)

S

PS

AV

2

→ 0 (1)

(2)

! 0 (3)

(4)

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (9)

(10)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (11)

(12)

v0 , v2 (13)

(14)

L = 1 (15)

(16)

χχ → f f̄ (17)

(18)

mf/mχ (19)

(20)

(mf/mχ)2 (21)

(22)

C = (−)L+S (23)

(24)
2S+1LJ (25)

(26)

JPC (27)

(28)
3P0(0

++) (29)

(30)
1S0(0

−+) (31)

(32)
3P1(1

++) (33)

(34)
3S1(1

−−) (35)

(36)
3D1(2

+−) (37)

(38)

Ψ̄Ψ (39)

(40)

Ψ̄iγ5Ψ (41)

(42)

Ψ̄γµγ5Ψ (43)

(44)

Ψ̄iγµΨ (45)

(46)

Ψ̄σµνΨ (47)

2

→ 0 (1)

(2)

! 0 (3)

(4)

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (9)

(10)

M ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (11)

(12)

v0 , v2 (13)

(14)

L = 1 (15)

(16)

χχ → f f̄ (17)

(18)

mf/mχ (19)

(20)

(mf/mχ)2 (21)

(22)

C = (−)L+S (23)

(24)
2S+1LJ (25)

(26)

JPC (27)

(28)
3P0(0

++) (29)

(30)
1S0(0

−+) (31)

(32)
3P1(1

++) (33)

(34)
3S1(1

−−) (35)

(36)
3D1(2

+−) (37)

(38)

Ψ̄Ψ (39)

(40)

Ψ̄iγ5Ψ (41)

(42)

Ψ̄γµγ5Ψ (43)

(44)

Ψ̄iγµΨ (45)

(46)

Ψ̄σµνΨ (47)

2

→ 0 (1)

(2)

! 0 (3)

(4)

→
1

4
v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ

5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ

5γµu(p1)ū(p3)PLγ5γµPRv(p4) (9)

(10)

Mt ∝ v̄(p2)PLv(p4)ū(p3)PRu(p1) (11)

(12)

v0 , v2 (13)

(14)

L = 1 (15)

(16)

χχ → f f̄ (17)

(18)

mf/mχ (19)

(20)

(mf/mχ)2 (21)

(22)

C = (−)L+S (23)

(24)
2S+1LJ (25)

(26)

JPC (27)

(28)
3P0(0

++) (29)

(30)
1S0(0

−+) (31)

(32)
3P1(1

++) (33)

(34)
3S1(1

−−) (35)

(36)
3D1(2

+−) (37)

(38)

Ψ̄Ψ (39)

(40)

Ψ̄iγ5Ψ (41)

(42)

Ψ̄γµγ5Ψ (43)

(44)

Ψ̄iγµΨ (45)

(46)

Ψ̄σµνΨ (47)
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Fierz Transformations

• I get extra terms from the relations in Eqs.(13,14)

I would think that looking at the time component is the thing to do since,
when squaring out the dark matter part of the amplitude, it is the time-like
part that gives the v0 s-wave term we want. I could then see ū(p3)(γ0p0

3 +
γipi

3 − mf ) = 0 and keeping only the time part and the mass term since the
others have velocities. Then using p0

3 = E =
√

s/2 = mχ to first order in ve-
locity, I can then obtain ū(p3)γµ → ū(p3)γ0 = ū(p3)γ0p0

3/p
0
3 = ū(p3)mf/mχ.

which gives a fermion mass term, but also the dark matter mass in the de-
nominator.

η

f̃L

f̃R

f̃L

χ(p1)

χ(p1)

χ(p1)

χ(p1)

χ(p2)

χ(p2)

χ(p2)

χ(p2)

f(p3)

f(p3)

f(p3)

f(p3)

f̄(p4)

f̄(p4)

f̄(p4)

f̄(p4)

a b

c d

4

Using the Fierz transformation
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A. End result...

I’ve moved this section up here because you’ve used these equations in the following section, but
this really needs to be integrated into the rest of the Fierz stuff-Thomas

To apply the Fierz transformations to our t+u-channel matrix elements, we use the result:

(Γ1)
b
a(Γ2)

d
c =

1

4

∑

A

∆A(γA)d
a(Γ1γAΓ2)

b
c (67)

Where γA are the 16 Dirac Γs. Multiplying by spinors v̄a, vb, ūc, ud,

(v̄Γ1v)(ūΓ2u) =
1

4
ΣA∆A(v̄γAu)(ūΓ1γAΓ2v), (68)

Values of ∆A for all cases are given in Table IV.

TABLE IV: Gamma Matrices

A γA ∆A

1 ! +1

2,3,4,5 γ0,1,2,3 +1,-1,-1,-1

6,7,8,9,10,11 σ10,20,30,12,23,31 +1,+1,+1,-1,-1,-1

12,13,14,15 γ5γ0,1,2,3 -1,+1,+1,+1

16 γ5 +1

V. MAJORANA DARK MATTER AND HELICITY SUPPRESSION

A. Matrix Element and Interference terms

If the annihilating dark matter is Majorana fermions, then the constraints relating the four-component spinors to
their underlying two-component spinors must be imposed. These constraints are

u(p, s) = Cv̄T (p, s) , v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 , and ū(p, s) = −vT (p, s)C−1 . (69)

(Any one of the relations in (69) implies the other three.) Here, C is the charge conjugation matrix, which satisfies

C−1 = C† , CT = −C , WHAT IS RELATION BETWEEN C AND C−1 ? (70)

WHAT IS THE RELATION BETWEEN C AND C−1?
IS it model-dependent in that C = ηCC−1, with ηC USUALLY CHOSEN TO BE ±1?

C−1ΓC = ηBΓT , Γ = ΓB or ΓB , (71)

with ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and ηB = −1 for Γ = vector or tensor. Relation (71) is
slightly altered for the chiral basis Dirac matrices:

C−1

[{

R

L

}

Γ

]

C = ηB

[{

L

R

}

Γ

]T

, again with Γ = ΓB or ΓB , and ηB as before . (72)

For Majorana χ’s, any t-channel Feynman diagram must be paired with a u-channel diagram, related by the an-
tisymmetry required for identical fermions. Equivalently, each Majorana current is paired with minus the current
obtained by interchanging p1 ↔ p2 and s1 ↔ s2.
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v̄(p2)u(p1)ū(p3)PLPRv(p4) (5)

(6)

+
1

4
v̄(p2)γ
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Photon Brehmsstrahlung

1L. Bergstrom, Phys.Lett. B 225, 372 (1989)
2R. Flores, K.A. Olive, and S. Rudaz, Phys.Lett. B 232, 377 (1989)
3T.Bringmann, L. Bergstrom, and J. Edsjo, JHEP 0801 049 (2008)

4V. Barger, Y.Gao, W.-Y.Keung, and D. Marfatia, Phys.Rev.D 80, 063537 (2009)

It has been known for some time that radiative corrections to the dark 
matter annihilation process can be enormous when compared to the lowest 

order rate1,2,3,4.
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1N.F. Bell, JBD, T.Jacques, and T.J. Weiler, Phys.Rev. D 78 083540 (2008)
2M. Kachelriess, P.D. Serpico, and M. Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

It has been shown that electroweak bremsstrahlung can have a 
significant effect on processes which dominantly produce final state 
leptons1,2.

Sunday, May 9, 2010



Electroweak Brehmsstrahlung

1N.F. Bell, JBD, T.Jacques, and T.J. Weiler, Phys.Rev. D 78 083540 (2008)
2M. Kachelriess, P.D. Serpico, and M. Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

It has been shown that electroweak bremsstrahlung can have a 
significant effect on processes which dominantly produce final state 
leptons1,2.

There it was found that the bremsstrahlung branching ratio may be 
a considerable fraction of the lowest order process.

Sunday, May 9, 2010



Electroweak Brehmsstrahlung

1N.F. Bell, JBD, T.Jacques, and T.J. Weiler, Phys.Rev. D 78 083540 (2008)
2M. Kachelriess, P.D. Serpico, and M. Aa. Solberg, Phys.Rev. D 80, 123533 (2009)

It has been shown that electroweak bremsstrahlung can have a 
significant effect on processes which dominantly produce final state 
leptons1,2.

These studies were done assuming no helicity suppression.  We will 
now investigate these effects in conjuction with the suppressed 
processes.

There it was found that the bremsstrahlung branching ratio may be 
a considerable fraction of the lowest order process.
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Lifting Suppression in an Example Model

1 Q.H. Cao, E. Ma and G. Shaughnessy, Phys.Lett. B 63, 152 (2009)

13
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ν̄ (q2)

W− (Q)

ν (p1)

η0

χ (k2) e+ (p2)
FIG. 1: Contributions to χχ → e+νW− (Need to label them clockwise from top-left as t1, u1, u2, t2)

amplitude proportional to the gauge-invariant combination F̃ a
µν [v̄(k1)γ5γµuk2] [ū(p1)τaγ5γνv(p2)], where #τ

is the SU(2) isovector generator.
NEEDS FLESHING.
ANYONE INTERESTED IN THIS AVENUE OF EXCITEMENT?

Somewhere, cite the two-component alternative not taken in this work [2].
And somewhere, cite Kachelriess et al [3].

*******************************************************************************************************
*******************************************************************************************************

VI. LIFTING OF SUPPRESSION IN AN EXAMPLE MODEL

To show that emission of a W± or Z boson can lift helicity suppression, we explicitly calculate the cross section
for χχ → e+ν in a leptophilic model with suppressed tree level cross section. We choose the model proposed by Cao,
Ma and Shaughnessy [27], where DM couples to the leptons via the interaction

f(νη0 − lη+)χ + h.c. (86)

where f is the coupling constant, and η0, η+ form a scalar SU(2) doublet. For Majorana DM, the cross section for
this process, as reported in Ref. [27], is

σv =
f4(r2 − 2r3 + 2r4)v2

24mχ2π
, (87)

where the nonrelativistic approximation σv = a + bv2 has been made, and

r =

(

mχ2

mη2 + mχ2

)

. (88)

This explicitly shows the v2 suppression, as expected from our analysis in Section V.
We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),

with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed

We will examine the leptophilic model1
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VI. LIFTING OF SUPPRESSION IN AN EXAMPLE MODEL

To show that emission of a W± or Z boson can lift helicity suppression, we explicitly calculate the cross section
for χχ → e+ν in a leptophilic model with suppressed tree level cross section. We choose the model proposed by Cao,
Ma and Shaughnessy [27], where DM couples to the leptons via the interaction

f(νη0 − lη+)χ + h.c. (86)

where f is the coupling constant, and η0, η+ form a scalar SU(2) doublet. For Majorana DM, the cross section for
this process, as reported in Ref. [27], is

σv =
f4(r2 − 2r3 + 2r4)v2

24mχ2π
, (87)

where the nonrelativistic approximation σv = a + bv2 has been made, and

r =

(

mχ2

mη2 + mχ2

)

. (88)

This explicitly shows the v2 suppression, as expected from our analysis in Section V.
We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),

with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed

We will examine the leptophilic model1

For Majorana dark matter the cross-section in the massless lepton 
limit is

where

14

contribution. This order (v0
χ) pseudoscalar contribution is potentially non-helicity supressed as well. At lowest order

in the production of a fermion pair, the final state trace is

Tr [(/p1
+ me) γ5γµ (/p2

−me) γ5γν ] . (97)

When this trace is contracted with the pseudoscalar piece above, 2s gµ0 gν0, one gets 16s m2
e, with the m2

e factor
characteristic of helicity-suppression. However, we will see that adding a radiated W- (or Z-) brehmstrahling to the
final state removes the helicity suppression, as it contributes a nonzero rate even in the me → 0 limit.

For completeness here, we also give the χχ traces for the s-channel scalar (S) and pseudoscalar (P). They are

Tr [(/k1 + Mχ) (/k2 −Mχ) ] = 2s v2
χ , (98)

and

Tr [(/k1 + Mχ) (iγ5)(/k2 −Mχ) (−iγ5) ] = −2s . (99)

The scalar case shows a v2
χ-suppressed p-wave, but the pseudoscalar case reveals an unsuppressed (v0

χ) s-wave.
With allusions to the partial wave analysis of our PRD [6]
Refs. [1] show that when a hard photon is bremsstrahlunged in the final state, then there is no helic-

ity suppression of the amplitude. After Fierzing, the amplitude without brehmstrahlung is proportional to
[v̄(k1)γ5γµuk2] [ū(p1)γ5γµv(p2)] and exhibits helicity suppression. With the brehmstrahlung, the amplitude instead
includes a term proportional to F̃µν [v̄(k1)γ5γµuk2] [ū(p1)γ5γνv(p2)], which is helicity unsuppressed.
1. the Rudaz paper expands amplitudes in inverse powers of M2

η , and shows that the gauge-invariant
non-suppression arises at order M−4

η ;
we might learn something from this, or we might even do this!
2. Since hard photon brehmsstrahlung has some analogy in massive W/Z brehmsstrahlung, we might
expect a similar non-suppression to occur in the latter case, i.e., an unsuppressed contribution to the
amplitude proportional to the gauge-invariant combination F̃ a

µν [v̄(k1)γ5γµuk2] [ū(p1)τaγ5γνv(p2)], where $τ
is the SU(2) isovector generator.
NEEDS FLESHING.
ANYONE INTERESTED IN THIS AVENUE OF EXCITEMENT?

Somewhere, cite the two-component alternative not taken in this work [2].
And somewhere, cite Kachelriess et al [3].
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VI. LIFTING OF SUPPRESSION IN AN EXAMPLE MODEL

To show that emission of a W± or Z boson can lift helicity suppression, we explicitly calculate the cross section
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µν [v̄(k1)γ5γµuk2] [ū(p1)τaγ5γνv(p2)], where $τ
is the SU(2) isovector generator.
NEEDS FLESHING.
ANYONE INTERESTED IN THIS AVENUE OF EXCITEMENT?

Somewhere, cite the two-component alternative not taken in this work [2].
And somewhere, cite Kachelriess et al [3].

*******************************************************************************************************
*******************************************************************************************************

VI. LIFTING OF SUPPRESSION IN AN EXAMPLE MODEL

To show that emission of a W± or Z boson can lift helicity suppression, we explicitly calculate the cross section
for χχ→ e+ν in a leptophilic model with suppressed tree level cross section. We choose the model proposed by Cao,
Ma and Shaughnessy [27], where DM couples to the leptons via the interaction

f(νη0 − lη+)χ + h.c. (100)

where f is the coupling constant, and η0, η+ form a scalar SU(2) doublet. For Majorana DM, the cross section for
this process, as reported in Ref. [27], is

σv =
f4(r2 − 2r3 + 2r4)v2

24m2
χπ

, (101)

where the nonrelativistic approximation σv = a + bv2 has been made, and

r =

(
m2

χ

m2
η + m2

χ

)
. (102)

This explicitly shows the v2 suppression, as expected from our analysis in Section V.

Sunday, May 9, 2010



Lifting Suppression in an Example Model

1 Q.H. Cao, E. Ma and G. Shaughnessy, Phys.Lett. B 63, 152 (2009)

13

χ (k1) e− (q1)

W− (Q)

ν (p1)

η+

χ (k2) e+ (p2)

χ (k1)
e− (q1)

W− (Q)

ν (p1)

η+

χ (k2) e+ (p2)

χ (k1) ν (p1)

η0

χ (k2) ν̄ (q2)

W− (Q)

e+ (p2)

χ (k1)

ν̄ (q2)

W− (Q)

ν (p1)

η0

χ (k2) e+ (p2)
FIG. 1: Contributions to χχ → e+νW− (Need to label them clockwise from top-left as t1, u1, u2, t2)

amplitude proportional to the gauge-invariant combination F̃ a
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FIG. 1: Contributions to χχ → e+νW−. Emission from the scalar propagator is not included, as it is suppressed by 1/M2

η .
Note that all fermion momenta flow with the arrow except p2, so q1 = p1 + Q, q2 = −p2 − Q. [I’m not happy with the
location of the t1, t2 etc. labels. Is it clear enough?]

t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)
2

t2 = (k1 − p1)2 = (−q2 − k2)
2

u1 = (k2 − q1)2 = (p2 − k1)
2

u2 = (k2 − p1)2 = (−q2 − k1)
2, (10)

and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5

2 , PR ≡ 1−γ5

2
appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(3), we get

Mt1 =
igf2

√
2q2

1

1

t1 − M2
η

εQ
µ

1

4

[(

v̄(k2)u(k1)
)(

ū(p1)PLγµPL /q1v(p2)
)

+
(

v̄(k2)γ5u(k1)
)(

ū(p1)PLγ5γ
µPL /q1v(p2)

)

+
(

v̄(k2)γ5γαu(k1)
)(

ū(p1)γ
αγµPL /q1v(p2)

)]

=
igf2

√
2q2

1

1

t1 − M2
η

εQ
µ

1

4

(

v̄(k2)γ5γαu(k1)
)(

ū(p1)PLγαγµ
/q1v(p2)

)

(11)

where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. 1 Note that
this matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in
the final-state term are in a different order.

Similarly, the matrix element for the top-right diagram can be written as

Mu1
=

−igf2

√
2q2

1

1

u1 − M2
η

1

4

(

v̄(k2)γ5γαu(k1)
)(

ū(p1)PLγαγµ
/q1v(p2)

)

εQ
µ , (12)

1 The vector and tensor terms explicitly disappear once we take the heavy η approximation, as shown in Appendix B.
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ū(p1)PLγ5γ
µPL /q1v(p2)

)

+
(

v̄(k2)γ5γαu(k1)
)(
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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t2 = (k1 − p1)2 = (q2 − k2)2
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and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5
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appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
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ū(p1)PLγαγµ

/q1v(p2)
)

(105)

where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2

u1 = (k2 − q1)2 = (p2 − k1)2
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and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5
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appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
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where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2

u1 = (k2 − q1)2 = (p2 − k1)2
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and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5
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appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(78), we get
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where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2

u1 = (k2 − q1)2 = (p2 − k1)2

u2 = (k2 − p1)2 = (q2 − k1)2, (104)

and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5

2
appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(78), we get
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where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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)(
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2

u1 = (k2 − q1)2 = (p2 − k1)2

u2 = (k2 − p1)2 = (q2 − k1)2, (104)

and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5

2
appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(78), we get

Mt1 =
igf2

√
2q2

1

1
t1 −m2

η

εQ
µ

1
4

[(
v̄(k2)u(k1)

)(
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ū(p1)PLγαγµ

/q1v(p2)
)

(105)

where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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5u(p1)ū(p3)PLγ5PRv(p4) (7)

(8)

−
1

4
v̄(p2)γ
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2

u1 = (k2 − q1)2 = (p2 − k1)2

u2 = (k2 − p1)2 = (q2 − k1)2, (104)

and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5

2
appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(78), we get
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where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.
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We now calculate the cross section for the process χχ → e+νW−, (equal to the cross section for χχ → e−ν̄W+),
with the four contributing diagrams shown in Figure 1. We only look at bremsstrahlung from the final state particles,
neglecting emission from the virtual scalar. In the unitary gauge, emission from the internal line will be suppressed
by a further power of m2

η due to the additional scalar propagator; consequently, we expect our results to be valid to
lowest order in 1/m2

η. The matrix element for the top-left diagram is
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)2 = (p2 − k2)2

t2 = (k1 − p1)2 = (q2 − k2)2
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and we have neglected lepton masses from here onwards. The chirality projection operators PL ≡ 1−γ5
2 , PR ≡ 1−γ5

2
appear since the DM couples only to the left-handed SU(2) lepton doublet via the scalar doublet (η0, η+), not to the
right-handed singlet states. Upon applying Eq.(78), we get
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)(
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(105)

where the first two terms are zero due to the helicity projection operators, leaving only an axial vector term. The
vector and tensor states are disallowed for Majorana dark matter, since they produce C-odd bilinears. Note that this
matrix element bears a resemblance to the matrix element for s-channel annihilation, although the γ matrices in the
final-state term are in a different order.

Similarly, the matrix element for the top-right diagram can be written as
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4
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)
εQ
µ , (106)
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FIG. 2: σv(χχ → e+νW−)/σv(χχ → e+e−) vs. mχ (GeV), for Ma’s model, with mη = 1010 GeV (assuming mη " t, u)

We evaluate the scalar products that arise from Eq. 109 in terms of the invariants q2
1 , Q2 = m2

W , s, t1, and u1, and
the angles θ1, θ2, and φ. We then use Eq. 110 to evaluate the cross section. To leading order, we find
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where we have assumed m+
η = m0

η, and mη " t1, t2, u1, u2. By making the transformation

d cos(θq) dq2 →
−4

√
sq2

(s − q2)(q2 − mW 2)
dEW dq2 (116)

(and appropriately changing the limits on the dq2 integral), we find, to leading order,
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Similarly, we find

dσv

dEe
=

−g2f4

393216m2
Wm4

ηm4
χ(mχ − Ee)5 (m2

W + 4Eemχ)π3

(

Ee

(

m2
W + 4(Ee − mχ)mχ

)

×

(

− 3E3
em8

W + 8E2
em6

W

(

2E2
e + m2

W

)

mχ − 6Eem
4
W

(

2E2
e + m2

W

) (

8E2
e + m2

W

)

m2
χ

+16E2
em2

W

(

48E4
e + 7E2

em2
W + 7m4

W

)

m3
χ + 8Ee

(

1184E6
e − 904E4

em2
W + 158E2

em4
W − 9m6

W

)

m4
χ

−32E2
e

(

1624E4
e − 780E2

em2
W + 97m4

W

)

m5
χ + 96Ee

(

1240E4
e − 418E2

em2
W + 27m4

W

)

m6
χ

−256
(

571E4
e − 125E2

em2
W + 3m4

W

)

m7
χ + 128Ee

(

796E2
e − 93m2

W

)

m8
χ + 1536

(

−25E2
e + m2

W

)

m9
χ + 6144Eem

10
χ

)

+768(Ee − mχ)4m4
χ

(

m2
W + 4Eemχ

)

×
(

(

−2E2
e + m2

W

)2
+ 8Ee

(

−E2
e + m2

W

)

mχ + 2
(

2E2
e − m2

W

)

m2
χ

)

Log

[

m2
W mχ

(mχ − Ee) (m2
W + 4Eemχ)

]

)

. (118)

The ratio RW = σv(χχ → e+νW−)/σv(χχ → e+e−) is given in figure 2 for scalar mass mη = 1010 GeV.
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The ratio RW = σv(χχ → e+νW−)/σv(χχ → e+e−) is given in figure 2 for scalar mass mη = 1010 GeV.
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However, the leptons couple to the dark matter via the left-handed SU(2) η doublet, so only the left handed part
of the leptons participate in the interaction. To take this into account, we include projection operators in the matrix
element.

For the e+e−Z final state, this leads to matrix elements that look like, for example,

Mt1 =
igf2

cos θW q2
1

1

t1 − M2
η

(

v̄(k2)PLv(p2)
)(

ū(p1)PRγµ

((

−
1

2
+ sin2 θW

)

PL + sin2 θW PR

)

/q1u(k1)
)

εQ
µ

=
igf2

cos θW q2
1

1

t1 − M2
η

(

v̄(k2)PLv(p2)
)(

ū(p1)PRγµ

(

−
1

2
+ sin2 θW

)

PL /q1u(k1)
)

εQ
µ (26)

since PLPR = 0, so the matrix element once again has the same Dirac structure as for W± emission, and differs
only by the different boson mass and a normalization factor:

σve+e−Z(MZ) = σve+νW−(MZ) 2

(

sin2 θW − 1
2

)2

cos2 θW
∼ 5.3 σve+νW−(MZ). (27)

B. Energy spectra and Data - TO BE UPDATED

IV. DISCUSSION AND CONCLUSIONS

• Discussion points:

• Is there a chance we’ve missed a term or correction that cancels with our unsuppressed terms?

• What figures do we want in the paper?

• Do we include any propagation/decay spectrum stuff in this paper? Maybe some preliminary stuff, to lay a
claim?
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FIG. 3: dN/dEW for Ma’s model, with Mχ = 300 GeV, Mη = 1010 GeV

V. CONCLUSIONS

In an attempt to explain recent anomalies in cosmic ray data in a dark matter framework, various non-standard
properties have been invoked such as dominant annihilation to leptons in so-called leptophilic models. Such annihi-
lations invariably are confronted by suppressions of such processes via either p-wave velocity suppression or helicity
suppression when the dark matter is Majorana in nature. With the aid of Fierz transformation technology, which we
have presented in some detail, we have recapitulated the general circumstances where suppressions may be encoun-
tered.

It has been known for some time that photon bremsstrahlung may have a dramatic effect on such suppressions. We
have shown that once one considers the inclusion of three body final states due to electroweak bremsstrahlung, one
may also lift these suppressions and obtain rates which may be several orders of magnitude beyond those without such
radiative corrections. Such processes may be lethal for models attempting to produce positrons without overproducing
anti-protons due to the subsequent hadronization of the radiated gauge bosons.

In a broader context the results presented here show the importance that may be played by electroweak
bremsstrahlung in future searches of indirect dark matter detection.
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Appendix A: Fundamental Fierzing

In this paper we have made use of standard Fierz transformations, helicity-basis Fierz transformations, and generaliza-
tions of the two. In this Appendix, we derive these transformations. The procedure for standard Fierz transformation
can be found in, e.g., [? ] [Tom W, what reference is this?], while more general Fierz transformations are laid
down in [34]. The starting point is to define a basis {ΓB} and a dual basis {ΓB}, each spanning 4 × 4 matrices over
the complex number field C, such that an orthogonality relation holds. The standard Fierz transformation uses the
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“hermitian” bases

{ΓB} = {11, iγ5, γ
µ, γ5γ

µ, σµν} , and {ΓB} = {11, (−iγ5), γµ, (−γ5γµ),
1

2
σµν} , (A1)

respectively. Because of their Lorentz and parity transformation properties, these basis matrices and their duals are
often labeled as S and S̃ (scalars), P and P̃ (pseudoscalars), V and Ṽ (vectors, four for V , four for Ṽ ), A and Ã
(axial vector, four for A, four for Ã), and T and T̃ (antisymmetric tensor, six for T , six for T̃ ). As usual, spacetime
indices are lowered with the Minkowski metric, γ5 = γ5 = iγ0γ1γ2γ3, σµν ≡ i

2 [γµ, γν], (and γ5σµν = i
2εµναβσαβ).

Note the change of sign between the the basis and dual for the P and A matrices. The bases are “hermitian” in
that γ0 Γ†

Bγ0 = ΓB, so that the associated Dirac bilinears satisfy [Ψ̄1ΓBΨ2]† = Ψ̄2ΓBΨ1 and [Ψ̄1ΓBΨ2]† = Ψ̄2ΓBΨ1.
Importantly, we have ΓB = (ΓB)−1 in the sense of the accompanying orthogonality relation

Tr [ΓC ΓB ] = 4 δB
C , B, C = 1, . . . , 16 . (A2)

Note that the factor of 1
2 in the definition of T̃ = 1

2σµν (but not in T = σµν) provides the normalization required by
Eq. (A2):

Tr [ΓB ΓB](nosum) =
∑

C

Tr [ΓC ΓB] = 4 . (A3)

The orthogonality relation allows us to expand any 4× 4 complex matrix X in terms of the basis as

X = XB ΓB = XB ΓB , with XB =
1

4
Tr [ XΓB ] , and XB =

1

4
Tr [ XΓB ] ,

i.e., X =
1

4
Tr [XΓB] ΓB =

1

4
Tr [XΓB] ΓB . (A4)

One readily finds that the particular matrix element (X)ab satisfies

(X)cd δdb δac =
1

4
[(X)cd (ΓB)dc ] (ΓB)ab . (A5)
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(axial vector, four for A, four for Ã), and T and T̃ (antisymmetric tensor, six for T , six for T̃ ). As usual, spacetime
indices are lowered with the Minkowski metric, γ5 = γ5 = iγ0γ1γ2γ3, σµν ≡ i

2 [γµ, γν], (and γ5σµν = i
2εµναβσαβ).

Note the change of sign between the the basis and dual for the P and A matrices. The bases are “hermitian” in
that γ0 Γ†

Bγ0 = ΓB, so that the associated Dirac bilinears satisfy [Ψ̄1ΓBΨ2]† = Ψ̄2ΓBΨ1 and [Ψ̄1ΓBΨ2]† = Ψ̄2ΓBΨ1.
Importantly, we have ΓB = (ΓB)−1 in the sense of the accompanying orthogonality relation

Tr [ΓC ΓB ] = 4 δB
C , B, C = 1, . . . , 16 . (A2)

Note that the factor of 1
2 in the definition of T̃ = 1

2σµν (but not in T = σµν) provides the normalization required by
Eq. (A2):

Tr [ΓB ΓB](nosum) =
∑

C

Tr [ΓC ΓB] = 4 . (A3)

The orthogonality relation allows us to expand any 4× 4 complex matrix X in terms of the basis as

X = XB ΓB = XB ΓB , with XB =
1

4
Tr [ XΓB ] , and XB =

1

4
Tr [ XΓB ] ,

i.e., X =
1

4
Tr [XΓB] ΓB =

1

4
Tr [XΓB] ΓB . (A4)

One readily finds that the particular matrix element (X)ab satisfies

(X)cd δdb δac =
1

4
[(X)cd (ΓB)dc ] (ΓB)ab . (A5)
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