A Holographic Perspective on Gauge Mediation

Paul McGuirk University of Wisconsin-Madison

In collaboration with: Gary Shiu (UW-Madison), Yoske Sumitomo (TIFR) arXiv:0910.4581 and arXiv:0911.0019

Presented at: UW-Madison, Pheno, May 10, 2010

Motivation

- •Many BSM scenarios involve strong coupling.
- Strong-weak dualities can help to make problems tractable.
- Example (focus of this talk): A strongly coupled hidden sector in a GMSB scenario can be described using the gauge-gravity correspondence (a.k.a. AdS/CFT, holography)

Semi-Direct Gauge Mediation

 Semi-direct gauge mediation [Seiberg, Volansky, Wecht] is a compromise between minimal and direct scenarios

 Messenger fields charged under hidden sector gauge group, but do not participate in dynamical breaking of SUSY.

Strong Coupling

• If the hidden sector has large 't Hooft coupling $\lambda = g^2 N$, visible sector soft terms receive important corrections at all orders (direct perturbation theory is hopeless!)

• If λ is large and g is small (so N is large), then the gaugegravity correspondence is effective.

AdS/CFT

•Simplest example of gauge-gravity correspondence:

• To holographically describe gauge mediation [Benini, Dymarsky, Franco, Kachru, Simic, Verlinde]

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

Klebanov-Strassler (Geometry)

- •Finding the gravity dual of a particular gauge theory is difficult, but the inverse is sometimes easier.
- A particularly explicit example is Klebanov-Strassler found by placing *M* D5-branes on a deformed conifold singularity

Klebanov-Strassler (Gauge Theory)

- •Confines at a scale $\Lambda_{\varepsilon} = \varepsilon^{2/3}$
- \mathbb{Z}_2 R-symmetry (enhances to \mathbb{Z}_{2M} at small distances)

Dual Pictures

	$\mathrm{SU}\left(N ight)$	N + M
A_i		
B_i		

$$W = \lambda \epsilon^{ij} \epsilon^{kl} \operatorname{tr} \left(A_i B_k A_j B_l \right)$$

confinement at Λ_{ε}

$$\sum z_i = \varepsilon^2$$

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

Adding D3-branes

•D3-branes differ by the sign of charge

$$S_{\text{D3}} = -\tau_3 \int *_4 1 + \mu_3 \int C_{(4)} \qquad S_{\overline{\text{D3}}} = -\tau_3 \int *_4 1 - \mu_3 \int C_{(4)}$$

- Adding D3-branes to KS geometry breaks SUSY explicitly and entirely
- Dual of a metastable SUSY-breaking state in the KS theory [Kachru, Pearson, Verlinde; deWolfe, Kachru, Mulligan]

D3 Backreaction

- •D3s will gravitate and alter the geometry. Needs to be calculated for getting soft terms.
- Can be treated as a perturbation if number of $\overline{D3}$ s is small

 Solution known at large radius [DeWolfe, Kachru, Mulligan] and small radius [PM, Shiu, Sumitomo] (interpolation could use [Bena, Graña, Halmagyi])

Dual Pictures

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

Adding Flavor

 Adding D7-branes to the geometry adds a flavor group with bifundamental "quarks" to the dual theory (group is weakly gauged by cutting off the geometry)

Quarks act as messengers in semi-direct gauge mediation

Dual Pictures

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

Gaugino Mass

Messengers strongly coupled to hidden sector, so calculate soft terms holographically.

 Visible sector gaugino mass follows from dimensional reduction of classical D7 action

$$S_{\rm D7} = \tau_7 \int {\rm d}^8 x \, \bar{\theta} \mathcal{O}\theta \to \int {\rm d}^4 x \, m_{1/2} \lambda \lambda$$

•Non-SUSY perturbation of KS from $\overline{D3}s$ contributes to $m_{1/2}$

Gaugino Mass (cont.)

 \cap

•Two simplified regimes (mesonic contribution not included)

1.
$$m_\chi \gg \Lambda_\varepsilon \Rightarrow m_{1/2} = 0$$
 [Benini et al]

2. [PM, Shiu, Sumitomo]

$$m_{\chi} \approx \Lambda_{\varepsilon} \Rightarrow m_{1/2} \sim g_{vis}^2 \frac{F^2}{m_{\chi}^3} \left(\left(\frac{m_{\chi}}{\Lambda_{\varepsilon}} \right)^{3/2} - 1 \right)^{3/2}$$

 $F = \sqrt{\lambda} \Lambda_{S}^2$
Vacuum energy
(proportional to tension of D3s)

Gaugino Mass Comments

$$m_{1/2} \sim g_{\rm vis}^2 \frac{F^2}{m_\chi^3} \left(\left(\frac{m_\chi}{\Lambda_\varepsilon} \right)^{3/2} - 1 \right)^{3/2} \qquad F = \sqrt{\lambda} \Lambda_S^2$$

• $m_{\chi} \rightarrow \Lambda_{\varepsilon}$ limit cannot be trusted (singularity in geometry)

- F is non-perturbative in 't Hooft
- •Suppression of gaugino mass typical in semi-direct GMSB (recall in mGMSB $m_{1/2} \sim g_{vis}^2 \frac{F}{m_X}$)

Other Soft Terms

Visible sector matter fields localized in UV (gaugino mediation)

•Could also realize on intersecting D7s (work in progress)

Concluding Remarks

- Holography provides a powerful tool to explore BSM physics
- Here, I gave an example of using the technique to calculate soft terms in GMSB with strongly coupled messengers
- Although calculations are classical, need to understand gravity background well and calculations are complicated (though still easier than strong coupling picture!)

	Gauge Side	Gravity Side
1	Choose a hidden sector	Choose a gravity background
2	Prepare a (metastable) non-SUSY state	Add D3-branes
3	Introduce a flavor group with messenger "quarks"	Introduce D7-branes
4	Weakly gauge flavor group	Cutoff the geometry
5	Calculate soft terms using field theory	Calculate soft terms using string theory

Thanks!